基于遗传算法的特拉斯结构重量优化

Q4 Engineering
Azad Javanmiri, J. Mäkinen
{"title":"基于遗传算法的特拉斯结构重量优化","authors":"Azad Javanmiri, J. Mäkinen","doi":"10.23998/rm.111471","DOIUrl":null,"url":null,"abstract":"Lightweight structures, especially trusses, have attracted a tremendous attention due to their extensive applications in the construction of infrastructures. Optimizing the shape and cross-sectional topology of truss members is essential since the truss systems are widely used in engineering routines. These systems form the framework of structures like bridges, steel halls for industry and trade, and towers. For the scope of this research, genetic algorithms were used for weight optimization of truss structures. This paper aims to optimize truss structures for finding optimal cross-sectional area. To optimize the cross-sectional area, all members were selected as design variables, with the structure’s weight being the objective function. The restrictions related to the change of the location of the nodes and the tension in the members were the looked-upon problems, the permissible values of which were determined under the circumstances of the problem. In addition, the resulting optimized model which masses for sizing, shape, and topology or their combinations, were compared.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight optimization of truss structures by using genetic algorithms\",\"authors\":\"Azad Javanmiri, J. Mäkinen\",\"doi\":\"10.23998/rm.111471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightweight structures, especially trusses, have attracted a tremendous attention due to their extensive applications in the construction of infrastructures. Optimizing the shape and cross-sectional topology of truss members is essential since the truss systems are widely used in engineering routines. These systems form the framework of structures like bridges, steel halls for industry and trade, and towers. For the scope of this research, genetic algorithms were used for weight optimization of truss structures. This paper aims to optimize truss structures for finding optimal cross-sectional area. To optimize the cross-sectional area, all members were selected as design variables, with the structure’s weight being the objective function. The restrictions related to the change of the location of the nodes and the tension in the members were the looked-upon problems, the permissible values of which were determined under the circumstances of the problem. In addition, the resulting optimized model which masses for sizing, shape, and topology or their combinations, were compared.\",\"PeriodicalId\":52331,\"journal\":{\"name\":\"Rakenteiden Mekaniikka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rakenteiden Mekaniikka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23998/rm.111471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.111471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

轻型结构,尤其是桁架结构,由于其在基础设施建设中的广泛应用,引起了人们的极大关注。由于特拉斯系统在工程实践中得到广泛应用,优化特拉斯构件的形状和截面拓扑结构至关重要。这些系统构成了桥梁、工业和贸易用钢结构大厅以及塔楼等结构的框架。在本研究范围内,将遗传算法应用于特拉斯结构的重量优化。本文旨在对特拉斯结构进行优化,以寻找最佳截面面积。为了优化横截面积,选择所有构件作为设计变量,以结构的重量为目标函数。与节点位置变化和构件张力有关的限制是已考虑的问题,其允许值是根据问题的具体情况确定的。此外,还对所得到的优化模型(尺寸、形状和拓扑的质量或它们的组合)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight optimization of truss structures by using genetic algorithms
Lightweight structures, especially trusses, have attracted a tremendous attention due to their extensive applications in the construction of infrastructures. Optimizing the shape and cross-sectional topology of truss members is essential since the truss systems are widely used in engineering routines. These systems form the framework of structures like bridges, steel halls for industry and trade, and towers. For the scope of this research, genetic algorithms were used for weight optimization of truss structures. This paper aims to optimize truss structures for finding optimal cross-sectional area. To optimize the cross-sectional area, all members were selected as design variables, with the structure’s weight being the objective function. The restrictions related to the change of the location of the nodes and the tension in the members were the looked-upon problems, the permissible values of which were determined under the circumstances of the problem. In addition, the resulting optimized model which masses for sizing, shape, and topology or their combinations, were compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rakenteiden Mekaniikka
Rakenteiden Mekaniikka Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
2
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信