不规范条件下的因果推理:基于倾向得分的调整

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
D. Stephens, Widemberg S. Nobre, E. Moodie, A. M. Schmidt
{"title":"不规范条件下的因果推理:基于倾向得分的调整","authors":"D. Stephens, Widemberg S. Nobre, E. Moodie, A. M. Schmidt","doi":"10.1214/22-ba1322","DOIUrl":null,"url":null,"abstract":"We study Bayesian approaches to causal inference via propensity score regression. Much of the Bayesian literature on propensity score methods have relied on approaches that cannot be viewed as fully Bayesian in the context of conventional `likelihood times prior' posterior inference; in addition, most methods rely on parametric and distributional assumptions, and presumed correct specification. We emphasize that causal inference is typically carried out in settings of mis-specification, and develop strategies for fully Bayesian inference that reflect this. We focus on methods based on decision-theoretic arguments, and show how inference based on loss-minimization can give valid and fully Bayesian inference. We propose a computational approach to inference based on the Bayesian bootstrap which has good Bayesian and frequentist properties.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score\",\"authors\":\"D. Stephens, Widemberg S. Nobre, E. Moodie, A. M. Schmidt\",\"doi\":\"10.1214/22-ba1322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Bayesian approaches to causal inference via propensity score regression. Much of the Bayesian literature on propensity score methods have relied on approaches that cannot be viewed as fully Bayesian in the context of conventional `likelihood times prior' posterior inference; in addition, most methods rely on parametric and distributional assumptions, and presumed correct specification. We emphasize that causal inference is typically carried out in settings of mis-specification, and develop strategies for fully Bayesian inference that reflect this. We focus on methods based on decision-theoretic arguments, and show how inference based on loss-minimization can give valid and fully Bayesian inference. We propose a computational approach to inference based on the Bayesian bootstrap which has good Bayesian and frequentist properties.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1322\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1322","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 18

摘要

我们通过倾向得分回归研究了因果推断的贝叶斯方法。许多关于倾向评分方法的贝叶斯文献都依赖于在传统的“可能性乘以先验”后验推理中不能被视为完全贝叶斯的方法;此外,大多数方法都依赖于参数和分布假设,以及假定的正确规范。我们强调因果推理通常是在错误规范的情况下进行的,并制定了反映这一点的完全贝叶斯推理策略。我们重点讨论了基于决策理论论证的方法,并展示了基于损失最小化的推理如何给出有效和完全的贝叶斯推理。我们提出了一种基于贝叶斯自举的推理计算方法,该方法具有良好的贝叶斯和频率论特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score
We study Bayesian approaches to causal inference via propensity score regression. Much of the Bayesian literature on propensity score methods have relied on approaches that cannot be viewed as fully Bayesian in the context of conventional `likelihood times prior' posterior inference; in addition, most methods rely on parametric and distributional assumptions, and presumed correct specification. We emphasize that causal inference is typically carried out in settings of mis-specification, and develop strategies for fully Bayesian inference that reflect this. We focus on methods based on decision-theoretic arguments, and show how inference based on loss-minimization can give valid and fully Bayesian inference. We propose a computational approach to inference based on the Bayesian bootstrap which has good Bayesian and frequentist properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信