{"title":"具有常标量曲率的π P2和π H2中的实超曲面","authors":"Yaning Wang","doi":"10.1515/advgeom-2021-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, Hopf hypersurfaces in a complex projective plane ℂP2(c) or a complex hyperbolic plane ℂH2(c) with constant scalar curvature are classified. For a non-Hopf hypersurface in ℂP2(c) with constant scalar curvature r, it is proved that if the structure vector field is an eigenvector of the Ricci operator, then either r = 7c/2 or r = 3c/2. Moreover, these two cases are determined completely under an additional condition.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"22 1","pages":"495 - 502"},"PeriodicalIF":0.5000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real hypersurfaces in ℂP2 and ℂH2 with constant scalar curvature\",\"authors\":\"Yaning Wang\",\"doi\":\"10.1515/advgeom-2021-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, Hopf hypersurfaces in a complex projective plane ℂP2(c) or a complex hyperbolic plane ℂH2(c) with constant scalar curvature are classified. For a non-Hopf hypersurface in ℂP2(c) with constant scalar curvature r, it is proved that if the structure vector field is an eigenvector of the Ricci operator, then either r = 7c/2 or r = 3c/2. Moreover, these two cases are determined completely under an additional condition.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"22 1\",\"pages\":\"495 - 502\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Real hypersurfaces in ℂP2 and ℂH2 with constant scalar curvature
Abstract In this paper, Hopf hypersurfaces in a complex projective plane ℂP2(c) or a complex hyperbolic plane ℂH2(c) with constant scalar curvature are classified. For a non-Hopf hypersurface in ℂP2(c) with constant scalar curvature r, it is proved that if the structure vector field is an eigenvector of the Ricci operator, then either r = 7c/2 or r = 3c/2. Moreover, these two cases are determined completely under an additional condition.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.