{"title":"时间分数扩散方程的反系数问题","authors":"D. Durdiev","doi":"10.32523/2306-6172-2021-9-1-44-54","DOIUrl":null,"url":null,"abstract":"We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.","PeriodicalId":42910,"journal":{"name":"Eurasian Journal of Mathematical and Computer Applications","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Inverse coefficient problem for the time-fractional diffusion equation\",\"authors\":\"D. Durdiev\",\"doi\":\"10.32523/2306-6172-2021-9-1-44-54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.\",\"PeriodicalId\":42910,\"journal\":{\"name\":\"Eurasian Journal of Mathematical and Computer Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Mathematical and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2021-9-1-44-54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Mathematical and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-1-44-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Inverse coefficient problem for the time-fractional diffusion equation
We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.
期刊介绍:
Eurasian Journal of Mathematical and Computer Applications (EJMCA) publishes carefully selected original research papers in all areas of Applied mathematics first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Journal of Mathematical and Computer Applications (EJMCA) will also publish survey papers. Eurasian Mathematical Journal publishes 4 issues in a year. A working language of the journal is English. Main topics are: - Mathematical methods and modeling in mechanics, mining, biology, geophysics, electrodynamics, acoustics, industry. - Inverse problems of mathematical physics: theory and computational approaches. - Medical and industry tomography. - Computer applications: distributed information systems, decision-making systems, embedded systems, information security, graphics.