{"title":"基于RSM和NSGA-II的铝搅拌摩擦搭接工具参数建模与优化","authors":"M. Akbari, Hossein Rahimi Asiabaraki","doi":"10.1080/09507116.2022.2164530","DOIUrl":null,"url":null,"abstract":"Abstract Friction stir welding (FSW) success depends heavily on the temperature and strain the FSW/FSP tool induces. This study examined the influence of FSW tool characteristics like shoulder and probe diameter and probe height on temperature, forces and failure load of welding of AA5083 alloy using the response surface methodology (RSM). The study’s setup consisted of three factors, three levels, and 17 experimental runs. In order to determine the welding temperature, a thermocouple was placed inside the samples. Also, the force during the process was measured using a fixture designed for this purpose. The generated model’s suitability at a 95% confidence level was assessed using an analysis of variance. Using RSM, a relationship was discovered between input parameters, including tool settings and output responses, such as temperature, force, and joint mechanical properties. This relationship was then used to discover the best process parameters using a hybrid multiobjective optimization. Hybrid multiobjective optimization recommends a probe diameter of 5.1 mm, a shoulder diameter of 17.63 mm, and a probe height of 3.86 mm as the optimum tool. This study discovered that the most important factors influencing temperature force and failure load were shoulder diameter, probe diameter, and probe height, respectively.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"37 1","pages":"21 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II\",\"authors\":\"M. Akbari, Hossein Rahimi Asiabaraki\",\"doi\":\"10.1080/09507116.2022.2164530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Friction stir welding (FSW) success depends heavily on the temperature and strain the FSW/FSP tool induces. This study examined the influence of FSW tool characteristics like shoulder and probe diameter and probe height on temperature, forces and failure load of welding of AA5083 alloy using the response surface methodology (RSM). The study’s setup consisted of three factors, three levels, and 17 experimental runs. In order to determine the welding temperature, a thermocouple was placed inside the samples. Also, the force during the process was measured using a fixture designed for this purpose. The generated model’s suitability at a 95% confidence level was assessed using an analysis of variance. Using RSM, a relationship was discovered between input parameters, including tool settings and output responses, such as temperature, force, and joint mechanical properties. This relationship was then used to discover the best process parameters using a hybrid multiobjective optimization. Hybrid multiobjective optimization recommends a probe diameter of 5.1 mm, a shoulder diameter of 17.63 mm, and a probe height of 3.86 mm as the optimum tool. This study discovered that the most important factors influencing temperature force and failure load were shoulder diameter, probe diameter, and probe height, respectively.\",\"PeriodicalId\":23605,\"journal\":{\"name\":\"Welding International\",\"volume\":\"37 1\",\"pages\":\"21 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09507116.2022.2164530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2022.2164530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II
Abstract Friction stir welding (FSW) success depends heavily on the temperature and strain the FSW/FSP tool induces. This study examined the influence of FSW tool characteristics like shoulder and probe diameter and probe height on temperature, forces and failure load of welding of AA5083 alloy using the response surface methodology (RSM). The study’s setup consisted of three factors, three levels, and 17 experimental runs. In order to determine the welding temperature, a thermocouple was placed inside the samples. Also, the force during the process was measured using a fixture designed for this purpose. The generated model’s suitability at a 95% confidence level was assessed using an analysis of variance. Using RSM, a relationship was discovered between input parameters, including tool settings and output responses, such as temperature, force, and joint mechanical properties. This relationship was then used to discover the best process parameters using a hybrid multiobjective optimization. Hybrid multiobjective optimization recommends a probe diameter of 5.1 mm, a shoulder diameter of 17.63 mm, and a probe height of 3.86 mm as the optimum tool. This study discovered that the most important factors influencing temperature force and failure load were shoulder diameter, probe diameter, and probe height, respectively.
期刊介绍:
Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.