T. Vereshchagina, E. Kutikhina, O. Buyko, A. Anshits
{"title":"煤粉煤灰微球氧化锆-铝胺复合材料的水热合成及其对Cs(I)和Sr(II)的吸附性能","authors":"T. Vereshchagina, E. Kutikhina, O. Buyko, A. Anshits","doi":"10.15826/chimtech.2022.9.4.18","DOIUrl":null,"url":null,"abstract":"The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 °C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesis and sorption performance to Cs(I) and Sr(II) of zirconia-analcime composites derived from coal fly ash cenospheres\",\"authors\":\"T. Vereshchagina, E. Kutikhina, O. Buyko, A. Anshits\",\"doi\":\"10.15826/chimtech.2022.9.4.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 °C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2022.9.4.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2022.9.4.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Hydrothermal synthesis and sorption performance to Cs(I) and Sr(II) of zirconia-analcime composites derived from coal fly ash cenospheres
The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 °C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.