{"title":"吉川表中面链的三点数","authors":"Nicholas Cazet","doi":"10.1142/s0218216523500372","DOIUrl":null,"url":null,"abstract":"Yoshikawa made a table of knotted surfaces in R^4 with ch-index 10 or less. This remarkable table is the first to enumerate knotted surfaces analogous to the classical prime knot table. A broken sheet diagram of a surface-link is a generic projection of the surface in R^3 with crossing information along its singular set. The minimal number of triple points among all broken sheet diagrams representing a given surface-knot is its triple point number. This paper compiles the known triple point numbers of the surface-links represented in Yoshikawa's table and calculates or provides bounds on the triple point number of the remaining surface-links.","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Triple Point Number of Surface-Links in Yoshikawa's Table\",\"authors\":\"Nicholas Cazet\",\"doi\":\"10.1142/s0218216523500372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yoshikawa made a table of knotted surfaces in R^4 with ch-index 10 or less. This remarkable table is the first to enumerate knotted surfaces analogous to the classical prime knot table. A broken sheet diagram of a surface-link is a generic projection of the surface in R^3 with crossing information along its singular set. The minimal number of triple points among all broken sheet diagrams representing a given surface-knot is its triple point number. This paper compiles the known triple point numbers of the surface-links represented in Yoshikawa's table and calculates or provides bounds on the triple point number of the remaining surface-links.\",\"PeriodicalId\":54790,\"journal\":{\"name\":\"Journal of Knot Theory and Its Ramifications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knot Theory and Its Ramifications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216523500372\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500372","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Triple Point Number of Surface-Links in Yoshikawa's Table
Yoshikawa made a table of knotted surfaces in R^4 with ch-index 10 or less. This remarkable table is the first to enumerate knotted surfaces analogous to the classical prime knot table. A broken sheet diagram of a surface-link is a generic projection of the surface in R^3 with crossing information along its singular set. The minimal number of triple points among all broken sheet diagrams representing a given surface-knot is its triple point number. This paper compiles the known triple point numbers of the surface-links represented in Yoshikawa's table and calculates or provides bounds on the triple point number of the remaining surface-links.
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.