固体颗粒静态破碎磨削的应用力学和数学模型

Q3 Materials Science
G. A. Guryanov, B. M. Abdeev, S. R. Baigereyev, V. A. Kim, A. Suleimenov
{"title":"固体颗粒静态破碎磨削的应用力学和数学模型","authors":"G. A. Guryanov, B. M. Abdeev, S. R. Baigereyev, V. A. Kim, A. Suleimenov","doi":"10.15593/perm.mech/2021.3.06","DOIUrl":null,"url":null,"abstract":"Now crushers are one of the most common types of crushing equipment using the principle of a mechanical method of material destruction (for example, rollers, jaws, cone crushers, etc.). To provide effective parameters of the crusher, it is necessary to take into account the correlation between the physical and mechanical characteristics of the material (sizes, shapes, strengths, fragility, uniformity, etc.) and the energy parameters of the crusher (operation and power) at the design stage. The existing theories describing the mentioned dependence and relying on different classical hypotheses allow obtaining a very approximate (inaccurate) result. Consequently, it is necessary to develop a detailed theory of crushing capable of an accurate description of the mechanical process of material destructions by working members of the crushers. Thus, the authors have developed the crushing theory as an original solution of a complex constructively nonlinear engineering and technical problem on the static contact of a spherical model of a comminuted brittle substance with absolutely rigid convex-concave surfaces of cylindrical rolls designed for coarse and medium grinding. The theory is based on the classical assumptions of the mechanics of an elastically deformable continuous medium, the fundamental analytical dependences of Hertz-Shtaerman and the Kirpichev-Kick volumetric energy hypothesis. During the quantitative assessment of the bearing capacity of the ball, we used the well-known physical and mathematical problem of Weber on the stress state of a sphere loaded by two equal forces applied at the poles, and the Kulon-Mor’s strength criterion, which describes the process of destruction of a wide class of brittle homogeneous materials. The developed theory of fragmentation has been brought to the design formulas and illustrated with a typical numerical example.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Applied mechanical and mathematical model of grinding of a solid particle by static crushing\",\"authors\":\"G. A. Guryanov, B. M. Abdeev, S. R. Baigereyev, V. A. Kim, A. Suleimenov\",\"doi\":\"10.15593/perm.mech/2021.3.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now crushers are one of the most common types of crushing equipment using the principle of a mechanical method of material destruction (for example, rollers, jaws, cone crushers, etc.). To provide effective parameters of the crusher, it is necessary to take into account the correlation between the physical and mechanical characteristics of the material (sizes, shapes, strengths, fragility, uniformity, etc.) and the energy parameters of the crusher (operation and power) at the design stage. The existing theories describing the mentioned dependence and relying on different classical hypotheses allow obtaining a very approximate (inaccurate) result. Consequently, it is necessary to develop a detailed theory of crushing capable of an accurate description of the mechanical process of material destructions by working members of the crushers. Thus, the authors have developed the crushing theory as an original solution of a complex constructively nonlinear engineering and technical problem on the static contact of a spherical model of a comminuted brittle substance with absolutely rigid convex-concave surfaces of cylindrical rolls designed for coarse and medium grinding. The theory is based on the classical assumptions of the mechanics of an elastically deformable continuous medium, the fundamental analytical dependences of Hertz-Shtaerman and the Kirpichev-Kick volumetric energy hypothesis. During the quantitative assessment of the bearing capacity of the ball, we used the well-known physical and mathematical problem of Weber on the stress state of a sphere loaded by two equal forces applied at the poles, and the Kulon-Mor’s strength criterion, which describes the process of destruction of a wide class of brittle homogeneous materials. The developed theory of fragmentation has been brought to the design formulas and illustrated with a typical numerical example.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2021.3.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2021.3.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

现在破碎机是利用机械方法对物料进行破坏的原理(如滚筒、颚式、圆锥破碎机等)的最常见的破碎设备之一。要提供有效的破碎机参数,必须在设计阶段就考虑到物料的物理机械特性(粒度、形状、强度、脆性、均匀性等)与破碎机的能量参数(运行和功率)之间的相关性。现有的理论描述了上述依赖关系,并依赖于不同的经典假设,允许得到一个非常近似(不准确)的结果。因此,有必要发展一种详细的破碎理论,能够准确地描述破碎机工作人员破坏物料的机械过程。因此,作者开发了破碎理论,作为一个复杂的构造非线性工程技术问题的原始解决方案,该问题是针对用于粗、中研磨的具有绝对刚性凸凹表面的圆柱辊粉碎脆性物质的球面模型的静态接触。该理论基于弹性可变形连续介质力学的经典假设、Hertz-Shtaerman的基本解析依赖性和Kirpichev-Kick体积能量假设。在对球的承载能力进行定量评估时,我们使用了著名的韦伯的物理和数学问题,即在两极处施加两个相等的力载荷的球体的应力状态,以及Kulon-Mor的强度准则,该准则描述了一类广泛的脆性均质材料的破坏过程。将发达的破碎理论引入到设计公式中,并用典型的数值算例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Applied mechanical and mathematical model of grinding of a solid particle by static crushing
Now crushers are one of the most common types of crushing equipment using the principle of a mechanical method of material destruction (for example, rollers, jaws, cone crushers, etc.). To provide effective parameters of the crusher, it is necessary to take into account the correlation between the physical and mechanical characteristics of the material (sizes, shapes, strengths, fragility, uniformity, etc.) and the energy parameters of the crusher (operation and power) at the design stage. The existing theories describing the mentioned dependence and relying on different classical hypotheses allow obtaining a very approximate (inaccurate) result. Consequently, it is necessary to develop a detailed theory of crushing capable of an accurate description of the mechanical process of material destructions by working members of the crushers. Thus, the authors have developed the crushing theory as an original solution of a complex constructively nonlinear engineering and technical problem on the static contact of a spherical model of a comminuted brittle substance with absolutely rigid convex-concave surfaces of cylindrical rolls designed for coarse and medium grinding. The theory is based on the classical assumptions of the mechanics of an elastically deformable continuous medium, the fundamental analytical dependences of Hertz-Shtaerman and the Kirpichev-Kick volumetric energy hypothesis. During the quantitative assessment of the bearing capacity of the ball, we used the well-known physical and mathematical problem of Weber on the stress state of a sphere loaded by two equal forces applied at the poles, and the Kulon-Mor’s strength criterion, which describes the process of destruction of a wide class of brittle homogeneous materials. The developed theory of fragmentation has been brought to the design formulas and illustrated with a typical numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信