{"title":"基于特征的交叉分流板圆柱热流分析","authors":"S. Razavi, T. Adibi, Hussein Hassanpour","doi":"10.5541/IJOT.783614","DOIUrl":null,"url":null,"abstract":"In the present work, the laminar flow through a circular cylinder with two crossed splitter plates is analyzed. The characteristic-based method has been used along with the unstructured grid. The current research has been done to detect the proper conditions according to the geometrical parameters in which the optimal heat transfer is taking place. Geometric control parameters are the angle of splitter plates (\\theta) and the ratio of length of the splitter plate to cylinder radius (n=L/D). It was found that the use of a two-branched splitter plate is not wise in Reynolds number less than 100 due to its insignificant effect in flow properties. In angle 30° between two plates, the least drag force is witnessed with respect to other angles. Application of double branched splitter with angles more than 60° is not recommended, which will increase the total drag significantly. Since the splitter plate increases, the overall heat transfer from the cylinder and splitter set is enhanced. Minimum drag over the cylinder, and maximum convection drop from it is taken place when the dimension length is 0.75. Between dimensionless lengths 1.25 and 1.5, the Nusselt number oscillates with least amplitude and such behavior is also observed when two splitters are 60°apart.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermo-flow Analysis of Cylinder with Crossed Splitter Plates with a Characteristics-based Scheme\",\"authors\":\"S. Razavi, T. Adibi, Hussein Hassanpour\",\"doi\":\"10.5541/IJOT.783614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, the laminar flow through a circular cylinder with two crossed splitter plates is analyzed. The characteristic-based method has been used along with the unstructured grid. The current research has been done to detect the proper conditions according to the geometrical parameters in which the optimal heat transfer is taking place. Geometric control parameters are the angle of splitter plates (\\\\theta) and the ratio of length of the splitter plate to cylinder radius (n=L/D). It was found that the use of a two-branched splitter plate is not wise in Reynolds number less than 100 due to its insignificant effect in flow properties. In angle 30° between two plates, the least drag force is witnessed with respect to other angles. Application of double branched splitter with angles more than 60° is not recommended, which will increase the total drag significantly. Since the splitter plate increases, the overall heat transfer from the cylinder and splitter set is enhanced. Minimum drag over the cylinder, and maximum convection drop from it is taken place when the dimension length is 0.75. Between dimensionless lengths 1.25 and 1.5, the Nusselt number oscillates with least amplitude and such behavior is also observed when two splitters are 60°apart.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/IJOT.783614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/IJOT.783614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermo-flow Analysis of Cylinder with Crossed Splitter Plates with a Characteristics-based Scheme
In the present work, the laminar flow through a circular cylinder with two crossed splitter plates is analyzed. The characteristic-based method has been used along with the unstructured grid. The current research has been done to detect the proper conditions according to the geometrical parameters in which the optimal heat transfer is taking place. Geometric control parameters are the angle of splitter plates (\theta) and the ratio of length of the splitter plate to cylinder radius (n=L/D). It was found that the use of a two-branched splitter plate is not wise in Reynolds number less than 100 due to its insignificant effect in flow properties. In angle 30° between two plates, the least drag force is witnessed with respect to other angles. Application of double branched splitter with angles more than 60° is not recommended, which will increase the total drag significantly. Since the splitter plate increases, the overall heat transfer from the cylinder and splitter set is enhanced. Minimum drag over the cylinder, and maximum convection drop from it is taken place when the dimension length is 0.75. Between dimensionless lengths 1.25 and 1.5, the Nusselt number oscillates with least amplitude and such behavior is also observed when two splitters are 60°apart.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.