癌症宫颈的定量放射分型

S. Anbumani, Punitha Jayaraman, Pich, I. Anchaneyan, R. Bilimagga, N. ArunaiNambiRaj
{"title":"癌症宫颈的定量放射分型","authors":"S. Anbumani, Punitha Jayaraman, Pich, I. Anchaneyan, R. Bilimagga, N. ArunaiNambiRaj","doi":"10.15406/icpjl.2018.06.00149","DOIUrl":null,"url":null,"abstract":"Large volumes of raw scan images are stored in DICOM RT format in Picture Archiving and Communication System in imaging department. Thus, it is made available to data mining procedures. Raw data does not contain any tumor volumes defined. Hence the transverse CT images are segmented slice by slice using any automatic or semiautomatic algorithms. Many radiomic features are computed from the images after segmentation. The features range from volume, shape, surface density and intensity, texture, tumor location, relations with the surrounding tissues. Redundant information can be eliminated by proper quantification of data acquired. A feature selection algorithm accelerates the evaluation of these features. The data in the radiomic features were compared for any similarity. The repetition of similarity is evaluated when occurs in the same time frame. An outcome variable is defined in supervised analysis of data points to create a predictive model. Graphical representation of final results is deduced from unsupervised analysis. Now the new patient CT data is given as inputs in an radiomic algorithm, that returns a value for tumor growth and disease free survival. Radiomic features can be grouped into five important characteristics such as;","PeriodicalId":92215,"journal":{"name":"International clinical pathology journal","volume":"6 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantitative Radiomic Phenotyping of Cervix Cancer\",\"authors\":\"S. Anbumani, Punitha Jayaraman, Pich, I. Anchaneyan, R. Bilimagga, N. ArunaiNambiRaj\",\"doi\":\"10.15406/icpjl.2018.06.00149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large volumes of raw scan images are stored in DICOM RT format in Picture Archiving and Communication System in imaging department. Thus, it is made available to data mining procedures. Raw data does not contain any tumor volumes defined. Hence the transverse CT images are segmented slice by slice using any automatic or semiautomatic algorithms. Many radiomic features are computed from the images after segmentation. The features range from volume, shape, surface density and intensity, texture, tumor location, relations with the surrounding tissues. Redundant information can be eliminated by proper quantification of data acquired. A feature selection algorithm accelerates the evaluation of these features. The data in the radiomic features were compared for any similarity. The repetition of similarity is evaluated when occurs in the same time frame. An outcome variable is defined in supervised analysis of data points to create a predictive model. Graphical representation of final results is deduced from unsupervised analysis. Now the new patient CT data is given as inputs in an radiomic algorithm, that returns a value for tumor growth and disease free survival. Radiomic features can be grouped into five important characteristics such as;\",\"PeriodicalId\":92215,\"journal\":{\"name\":\"International clinical pathology journal\",\"volume\":\"6 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International clinical pathology journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/icpjl.2018.06.00149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International clinical pathology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/icpjl.2018.06.00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大量的原始扫描图像以DICOM RT格式存储在成像部门的图像存档和通信系统中。因此,它可用于数据挖掘过程。原始数据不包含任何定义的肿瘤体积。因此,使用任何自动或半自动算法逐层分割横向CT图像。许多放射学特征是从分割后的图像中计算出来的。其特征包括体积、形状、表面密度和强度、质地、肿瘤位置以及与周围组织的关系。冗余信息可以通过对所获取的数据进行适当的量化来消除。特征选择算法加速了对这些特征的评估。对放射组学特征中的数据进行了相似性比较。相似性的重复在同一时间段内发生时进行评估。在数据点的监督分析中定义结果变量,以创建预测模型。最终结果的图形表示是从无监督分析中推导出来的。现在,新的患者CT数据被作为放射组学算法的输入,该算法返回肿瘤生长和无病生存率的值。辐射特征可以分为五个重要特征,例如:;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Radiomic Phenotyping of Cervix Cancer
Large volumes of raw scan images are stored in DICOM RT format in Picture Archiving and Communication System in imaging department. Thus, it is made available to data mining procedures. Raw data does not contain any tumor volumes defined. Hence the transverse CT images are segmented slice by slice using any automatic or semiautomatic algorithms. Many radiomic features are computed from the images after segmentation. The features range from volume, shape, surface density and intensity, texture, tumor location, relations with the surrounding tissues. Redundant information can be eliminated by proper quantification of data acquired. A feature selection algorithm accelerates the evaluation of these features. The data in the radiomic features were compared for any similarity. The repetition of similarity is evaluated when occurs in the same time frame. An outcome variable is defined in supervised analysis of data points to create a predictive model. Graphical representation of final results is deduced from unsupervised analysis. Now the new patient CT data is given as inputs in an radiomic algorithm, that returns a value for tumor growth and disease free survival. Radiomic features can be grouped into five important characteristics such as;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信