{"title":"基于相场法的FGM牙冠有限元分析。","authors":"Ferit Sait, N. Saeidi, Turan Korkmaz","doi":"10.2139/ssrn.4264241","DOIUrl":null,"url":null,"abstract":"Functionally graded materials (FGMs) - categorized in advanced composite materials - are specially designed to reduce the stresses and failure due to material mismatches. Advances in manufacturing techniques have brought FGMs into use in a variety of applications. However, the numerical analysis is still challenging due to the difficulties in simulations of non-homogeneous material domains of complex parts. Presenting a numerical procedure that both facilitates the implementation of material non-homogeneity in geometrically complex mediums, and increases the accuracy of the calculations using a phase-field approach, this study investigates the usage of FGMs in dental prostheses. For this purpose, a porcelain fused to metal (PFM) mandibular first molar FGM crown is simulated and analyzed under the maximum masticatory bite force, and eventually the results are compared to a PFM crown prepared conventionally.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105629"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis of FGM dental crowns using phase-field approach.\",\"authors\":\"Ferit Sait, N. Saeidi, Turan Korkmaz\",\"doi\":\"10.2139/ssrn.4264241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functionally graded materials (FGMs) - categorized in advanced composite materials - are specially designed to reduce the stresses and failure due to material mismatches. Advances in manufacturing techniques have brought FGMs into use in a variety of applications. However, the numerical analysis is still challenging due to the difficulties in simulations of non-homogeneous material domains of complex parts. Presenting a numerical procedure that both facilitates the implementation of material non-homogeneity in geometrically complex mediums, and increases the accuracy of the calculations using a phase-field approach, this study investigates the usage of FGMs in dental prostheses. For this purpose, a porcelain fused to metal (PFM) mandibular first molar FGM crown is simulated and analyzed under the maximum masticatory bite force, and eventually the results are compared to a PFM crown prepared conventionally.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"138 1\",\"pages\":\"105629\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4264241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4264241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite element analysis of FGM dental crowns using phase-field approach.
Functionally graded materials (FGMs) - categorized in advanced composite materials - are specially designed to reduce the stresses and failure due to material mismatches. Advances in manufacturing techniques have brought FGMs into use in a variety of applications. However, the numerical analysis is still challenging due to the difficulties in simulations of non-homogeneous material domains of complex parts. Presenting a numerical procedure that both facilitates the implementation of material non-homogeneity in geometrically complex mediums, and increases the accuracy of the calculations using a phase-field approach, this study investigates the usage of FGMs in dental prostheses. For this purpose, a porcelain fused to metal (PFM) mandibular first molar FGM crown is simulated and analyzed under the maximum masticatory bite force, and eventually the results are compared to a PFM crown prepared conventionally.