Nora Jansen , Oliver Hinz , Clemens Deusser , Thorsten Strufe
{"title":"电话开了吗?-一个嗡嗡声检测系统的病毒性帖子在社交媒体","authors":"Nora Jansen , Oliver Hinz , Clemens Deusser , Thorsten Strufe","doi":"10.1016/j.intmar.2021.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Today, online social networks (OSNs) constitute a major part of our lives and have, to a large extent, replaced traditional media for direct communication, as well as information dissemination and gathering. In the vast amount of posts that get published in OSNs each day, some posts do not draw any attention while others catch on, become viral, and develop as so-called buzzes. Buzzes are defined through their characteristics of immediacy, unexpectedness, and intensity. The early detection of buzzes is of vital importance for companies, public figures, institutions, or political parties—e.g., for the pricing of profitable advertising placement or the development of an appropriate social media strategy. While previous researchers developed systems for detecting trending topics, mainly characterized by their intensity, this is the first study to implement a buzz detection system (BDS). Based on almost 120,000 manually classified Facebook posts, we estimated and trained models for the BDS by applying various classification techniques. Our results highlight that, among other predictors, the number of previously passive users who then engage in the buzz post, as well as the number of likes given to the comments, are important. Evaluating the BDS over a five-month evaluation period, we found that these two classifiers perform best and detected over 97% of the buzzes.</p></div>","PeriodicalId":48260,"journal":{"name":"Journal of Interactive Marketing","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.intmar.2021.03.003","citationCount":"5","resultStr":"{\"title\":\"Is the Buzz on? – A Buzz Detection System for Viral Posts in Social Media\",\"authors\":\"Nora Jansen , Oliver Hinz , Clemens Deusser , Thorsten Strufe\",\"doi\":\"10.1016/j.intmar.2021.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today, online social networks (OSNs) constitute a major part of our lives and have, to a large extent, replaced traditional media for direct communication, as well as information dissemination and gathering. In the vast amount of posts that get published in OSNs each day, some posts do not draw any attention while others catch on, become viral, and develop as so-called buzzes. Buzzes are defined through their characteristics of immediacy, unexpectedness, and intensity. The early detection of buzzes is of vital importance for companies, public figures, institutions, or political parties—e.g., for the pricing of profitable advertising placement or the development of an appropriate social media strategy. While previous researchers developed systems for detecting trending topics, mainly characterized by their intensity, this is the first study to implement a buzz detection system (BDS). Based on almost 120,000 manually classified Facebook posts, we estimated and trained models for the BDS by applying various classification techniques. Our results highlight that, among other predictors, the number of previously passive users who then engage in the buzz post, as well as the number of likes given to the comments, are important. Evaluating the BDS over a five-month evaluation period, we found that these two classifiers perform best and detected over 97% of the buzzes.</p></div>\",\"PeriodicalId\":48260,\"journal\":{\"name\":\"Journal of Interactive Marketing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.intmar.2021.03.003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interactive Marketing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094996821000190\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interactive Marketing","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094996821000190","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Is the Buzz on? – A Buzz Detection System for Viral Posts in Social Media
Today, online social networks (OSNs) constitute a major part of our lives and have, to a large extent, replaced traditional media for direct communication, as well as information dissemination and gathering. In the vast amount of posts that get published in OSNs each day, some posts do not draw any attention while others catch on, become viral, and develop as so-called buzzes. Buzzes are defined through their characteristics of immediacy, unexpectedness, and intensity. The early detection of buzzes is of vital importance for companies, public figures, institutions, or political parties—e.g., for the pricing of profitable advertising placement or the development of an appropriate social media strategy. While previous researchers developed systems for detecting trending topics, mainly characterized by their intensity, this is the first study to implement a buzz detection system (BDS). Based on almost 120,000 manually classified Facebook posts, we estimated and trained models for the BDS by applying various classification techniques. Our results highlight that, among other predictors, the number of previously passive users who then engage in the buzz post, as well as the number of likes given to the comments, are important. Evaluating the BDS over a five-month evaluation period, we found that these two classifiers perform best and detected over 97% of the buzzes.
期刊介绍:
The Journal of Interactive Marketing aims to explore and discuss issues in the dynamic field of interactive marketing, encompassing both online and offline topics related to analyzing, targeting, and serving individual customers. The journal seeks to publish innovative, high-quality research that presents original results, methodologies, theories, and applications in interactive marketing. Manuscripts should address current or emerging managerial challenges and have the potential to influence both practice and theory in the field. The journal welcomes conceptually rigorous approaches of any type and does not favor or exclude specific methodologies.