{"title":"平面随机聚类模型:尺度关系","authors":"H. Duminil-Copin, I. Manolescu","doi":"10.1017/fmp.2022.16","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the critical and near-critical regimes of the planar random-cluster model on \n$\\mathbb Z^2$\n with cluster-weight \n$q\\in [1,4]$\n using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents \n$\\beta $\n , \n$\\gamma $\n , \n$\\delta $\n , \n$\\eta $\n , \n$\\nu $\n , \n$\\zeta $\n as well as \n$\\alpha $\n (when \n$\\alpha \\ge 0$\n ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent \n$\\iota $\n replacing the four-arm event exponent \n$\\xi _4$\n .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Planar random-cluster model: scaling relations\",\"authors\":\"H. Duminil-Copin, I. Manolescu\",\"doi\":\"10.1017/fmp.2022.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the critical and near-critical regimes of the planar random-cluster model on \\n$\\\\mathbb Z^2$\\n with cluster-weight \\n$q\\\\in [1,4]$\\n using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents \\n$\\\\beta $\\n , \\n$\\\\gamma $\\n , \\n$\\\\delta $\\n , \\n$\\\\eta $\\n , \\n$\\\\nu $\\n , \\n$\\\\zeta $\\n as well as \\n$\\\\alpha $\\n (when \\n$\\\\alpha \\\\ge 0$\\n ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent \\n$\\\\iota $\\n replacing the four-arm event exponent \\n$\\\\xi _4$\\n .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2022.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 15
摘要
摘要本文利用新的耦合技术研究了簇权重为$q\in[1,4]$的$\mathbb Z^2上平面随机簇模型的临界和近临界状态。更准确地说,我们导出了临界指数$\beta$、$\gamma$、$\delta$、$\eta$、$s\nu$、$\ zeta$以及$\alpha$(当$\alpha \ge为0时)之间的比例关系。作为一个关键输入,我们使用对混合速率方面的边缘影响概念的新解释,展示了近临界状态下交叉概率的稳定性。作为副产品,我们导出了伯努利渗流的Kesten经典标度关系的推广,涉及“混合速率”临界指数$\iota$代替四臂事件指数$\neneneba xi _4$。
Abstract This paper studies the critical and near-critical regimes of the planar random-cluster model on
$\mathbb Z^2$
with cluster-weight
$q\in [1,4]$
using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents
$\beta $
,
$\gamma $
,
$\delta $
,
$\eta $
,
$\nu $
,
$\zeta $
as well as
$\alpha $
(when
$\alpha \ge 0$
). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent
$\iota $
replacing the four-arm event exponent
$\xi _4$
.