BioLumin:一种用于交互式微观可视化和生物医学研究注释的沉浸式混合现实体验

Aviv Elor, Steve Whittaker, Sri Kurniawan, Sam Michael
{"title":"BioLumin:一种用于交互式微观可视化和生物医学研究注释的沉浸式混合现实体验","authors":"Aviv Elor, Steve Whittaker, Sri Kurniawan, Sam Michael","doi":"10.1145/3548777","DOIUrl":null,"url":null,"abstract":"Many recent breakthroughs in medical diagnostics and drug discovery arise from deploying machine learning algorithms to large-scale data sets. However, a significant obstacle to such approaches is that they depend on high-quality annotations generated by domain experts. This study develops and evaluates BioLumin, a novel immersive mixed reality environment that enables users to virtually shrink down to the microscopic level for navigation and annotation of 3D reconstructed images. We discuss how domain experts were consulted in the specification of a pipeline to enable automatic reconstruction of biological models for mixed reality environments, driving the design of a 3DUI system to explore whether such a system allows accurate annotation of complex medical data by non-experts. To examine the usability and feasibility of BioLumin, we evaluated our prototype through a multi-stage mixed-method approach. First, three domain experts offered expert reviews, and subsequently, nineteen non-expert users performed representative annotation tasks in a controlled setting. The results indicated that the mixed reality system was learnable and that non-experts could generate high-quality 3D annotations after a short training session. Lastly, we discuss design considerations for future tools like BioLumin in medical and more general scientific contexts.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 1","pages":"1 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BioLumin: An Immersive Mixed Reality Experience for Interactive Microscopic Visualization and Biomedical Research Annotation\",\"authors\":\"Aviv Elor, Steve Whittaker, Sri Kurniawan, Sam Michael\",\"doi\":\"10.1145/3548777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent breakthroughs in medical diagnostics and drug discovery arise from deploying machine learning algorithms to large-scale data sets. However, a significant obstacle to such approaches is that they depend on high-quality annotations generated by domain experts. This study develops and evaluates BioLumin, a novel immersive mixed reality environment that enables users to virtually shrink down to the microscopic level for navigation and annotation of 3D reconstructed images. We discuss how domain experts were consulted in the specification of a pipeline to enable automatic reconstruction of biological models for mixed reality environments, driving the design of a 3DUI system to explore whether such a system allows accurate annotation of complex medical data by non-experts. To examine the usability and feasibility of BioLumin, we evaluated our prototype through a multi-stage mixed-method approach. First, three domain experts offered expert reviews, and subsequently, nineteen non-expert users performed representative annotation tasks in a controlled setting. The results indicated that the mixed reality system was learnable and that non-experts could generate high-quality 3D annotations after a short training session. Lastly, we discuss design considerations for future tools like BioLumin in medical and more general scientific contexts.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"3 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在医学诊断和药物发现方面的许多突破都源于将机器学习算法部署到大规模数据集。然而,这种方法的一个重大障碍是,它们依赖于领域专家生成的高质量注释。这项研究开发并评估了BioLumin,这是一种新颖的沉浸式混合现实环境,使用户能够虚拟地缩小到微观水平,用于3D重建图像的导航和注释。我们讨论了在管道规范中如何咨询领域专家,以实现混合现实环境中生物模型的自动重建,从而推动3DUI系统的设计,以探索这种系统是否允许非专家对复杂的医学数据进行准确注释。为了检验BioLumin的可用性和可行性,我们通过多阶段混合方法评估了我们的原型。首先,三位领域专家提供了专家评审,随后,19位非专家用户在受控环境中执行了具有代表性的注释任务。结果表明,混合现实系统是可学习的,非专家可以在短时间的训练后生成高质量的3D注释。最后,我们讨论了在医学和更一般的科学背景下,BioLumin等未来工具的设计考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BioLumin: An Immersive Mixed Reality Experience for Interactive Microscopic Visualization and Biomedical Research Annotation
Many recent breakthroughs in medical diagnostics and drug discovery arise from deploying machine learning algorithms to large-scale data sets. However, a significant obstacle to such approaches is that they depend on high-quality annotations generated by domain experts. This study develops and evaluates BioLumin, a novel immersive mixed reality environment that enables users to virtually shrink down to the microscopic level for navigation and annotation of 3D reconstructed images. We discuss how domain experts were consulted in the specification of a pipeline to enable automatic reconstruction of biological models for mixed reality environments, driving the design of a 3DUI system to explore whether such a system allows accurate annotation of complex medical data by non-experts. To examine the usability and feasibility of BioLumin, we evaluated our prototype through a multi-stage mixed-method approach. First, three domain experts offered expert reviews, and subsequently, nineteen non-expert users performed representative annotation tasks in a controlled setting. The results indicated that the mixed reality system was learnable and that non-experts could generate high-quality 3D annotations after a short training session. Lastly, we discuss design considerations for future tools like BioLumin in medical and more general scientific contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信