D. P. Vieira, Rodrigo M. Amarante, K. Y. Kang, Lariuss Zago, R. Dotta, R. S. Lavieri, C. M. Sampaio, K. Nishimoto
{"title":"FLNG参数化设计:综合建模方法","authors":"D. P. Vieira, Rodrigo M. Amarante, K. Y. Kang, Lariuss Zago, R. Dotta, R. S. Lavieri, C. M. Sampaio, K. Nishimoto","doi":"10.5957/jspd.02210006","DOIUrl":null,"url":null,"abstract":"This article deals with the development of a numerical tool based on an integrated synthesis model to carry out the first project cycle of floating liquefied natural gas (FLNG) platforms to produce, process, store, and export liquefied natural gas (LNG). The topside configuration, tank geometry and capacity, production levels, equipment list, environmental and operating conditions, classification society requirements, structure, stability, and seakeeping are considered in a single synthesis model, generating a sufficiently large number of solutions. The case generation and the evaluation process are performed hierarchically, dividing the parameters into groups to better solve the solution space, which cannot be achieved with conventional techniques such as traditional point-based design. This methodology is applied as a case study to design three FLNG platforms with different production levels (2, 3, and 4millionmetric tons per year). Performance parameters are defined and evaluated, optimizing downtime, structural mass, and load capacity. The resulting platforms are compared to existing FLNG dimensions. Essential conclusions are drawn about design improvements, such as key dimensions, quantity, and configuration of tanks, freeboard specifications, and operating draft. The developed synthesis framework proved to be a quick and useful tool for the early stages of the FLNG project.\n \n \n The growing global social and demographic development has led the world to face a growing demand for energy in recent decades. Although fossil fuels are still the most widely used primary energy source, emissions of greenhouse gases and other pollutants have been a cause of concern related to the climate and the environment.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FLNG Parametric Design: A Synthesis Modeling Approach\",\"authors\":\"D. P. Vieira, Rodrigo M. Amarante, K. Y. Kang, Lariuss Zago, R. Dotta, R. S. Lavieri, C. M. Sampaio, K. Nishimoto\",\"doi\":\"10.5957/jspd.02210006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the development of a numerical tool based on an integrated synthesis model to carry out the first project cycle of floating liquefied natural gas (FLNG) platforms to produce, process, store, and export liquefied natural gas (LNG). The topside configuration, tank geometry and capacity, production levels, equipment list, environmental and operating conditions, classification society requirements, structure, stability, and seakeeping are considered in a single synthesis model, generating a sufficiently large number of solutions. The case generation and the evaluation process are performed hierarchically, dividing the parameters into groups to better solve the solution space, which cannot be achieved with conventional techniques such as traditional point-based design. This methodology is applied as a case study to design three FLNG platforms with different production levels (2, 3, and 4millionmetric tons per year). Performance parameters are defined and evaluated, optimizing downtime, structural mass, and load capacity. The resulting platforms are compared to existing FLNG dimensions. Essential conclusions are drawn about design improvements, such as key dimensions, quantity, and configuration of tanks, freeboard specifications, and operating draft. The developed synthesis framework proved to be a quick and useful tool for the early stages of the FLNG project.\\n \\n \\n The growing global social and demographic development has led the world to face a growing demand for energy in recent decades. Although fossil fuels are still the most widely used primary energy source, emissions of greenhouse gases and other pollutants have been a cause of concern related to the climate and the environment.\\n\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/jspd.02210006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.02210006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
FLNG Parametric Design: A Synthesis Modeling Approach
This article deals with the development of a numerical tool based on an integrated synthesis model to carry out the first project cycle of floating liquefied natural gas (FLNG) platforms to produce, process, store, and export liquefied natural gas (LNG). The topside configuration, tank geometry and capacity, production levels, equipment list, environmental and operating conditions, classification society requirements, structure, stability, and seakeeping are considered in a single synthesis model, generating a sufficiently large number of solutions. The case generation and the evaluation process are performed hierarchically, dividing the parameters into groups to better solve the solution space, which cannot be achieved with conventional techniques such as traditional point-based design. This methodology is applied as a case study to design three FLNG platforms with different production levels (2, 3, and 4millionmetric tons per year). Performance parameters are defined and evaluated, optimizing downtime, structural mass, and load capacity. The resulting platforms are compared to existing FLNG dimensions. Essential conclusions are drawn about design improvements, such as key dimensions, quantity, and configuration of tanks, freeboard specifications, and operating draft. The developed synthesis framework proved to be a quick and useful tool for the early stages of the FLNG project.
The growing global social and demographic development has led the world to face a growing demand for energy in recent decades. Although fossil fuels are still the most widely used primary energy source, emissions of greenhouse gases and other pollutants have been a cause of concern related to the climate and the environment.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.