Qiwei Huang, Elizabeth Yihui Ng, Qingxin Li, CongBao Kang
{"title":"人KRAS与GDP结合的Q61H突变体的1H、15 N和13 C共振分配","authors":"Qiwei Huang, Elizabeth Yihui Ng, Qingxin Li, CongBao Kang","doi":"10.1007/s12104-021-10058-z","DOIUrl":null,"url":null,"abstract":"<div><p>KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"16 1","pages":"51 - 56"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1 H, 15 N and 13 C resonance assignments of the Q61H mutant of human KRAS bound to GDP\",\"authors\":\"Qiwei Huang, Elizabeth Yihui Ng, Qingxin Li, CongBao Kang\",\"doi\":\"10.1007/s12104-021-10058-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"16 1\",\"pages\":\"51 - 56\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-021-10058-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-021-10058-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
1 H, 15 N and 13 C resonance assignments of the Q61H mutant of human KRAS bound to GDP
KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.