Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, S. Floquet
{"title":"Clifford代数,量子神经网络和广义量子傅里叶变换","authors":"Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, S. Floquet","doi":"10.1007/s00006-023-01279-7","DOIUrl":null,"url":null,"abstract":"<div><p>We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01279-7.pdf","citationCount":"3","resultStr":"{\"title\":\"Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform\",\"authors\":\"Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, S. Floquet\",\"doi\":\"10.1007/s00006-023-01279-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-023-01279-7.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01279-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01279-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform
We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.