M. Cerón-Bustamante , E. Balducci , G. Beccari , P. Nicholson , L. Covarelli , P. Benincasa
{"title":"光谱对谷物真菌病原菌的影响","authors":"M. Cerón-Bustamante , E. Balducci , G. Beccari , P. Nicholson , L. Covarelli , P. Benincasa","doi":"10.1016/j.fbr.2022.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Light plays a crucial role in the growth and development of fungi. Fungal photoperception is controlled by several receptors such as phytochromes, cryptochromes/photolyase, opsins, and light oxygen voltage proteins that can trigger specific responses along the light spectrum. Although the filamentous fungus, <em>Neurospora crassa</em> is a leading research model in photoresponse studies, the analysis of a diverse range of fungal species has led to a better understanding of light signals in growth, reproduction, and secondary metabolism in the Fungi kingdom. In fungal pathogens, light has been demonstrated to be crucial during infection, colonization, and for the successful development of plant diseases. In this review, the most recent findings on the photobiology of the best-studied fungal pathogens of cereals are summarized. In particular, the effects of light on the germination, growth, sporulation, pathogenicity, and secondary metabolism of the most important wheat, barley, maize, and rice pathogens are discussed.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"43 ","pages":"Article 100291"},"PeriodicalIF":5.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of light spectra on cereal fungal pathogens, a review\",\"authors\":\"M. Cerón-Bustamante , E. Balducci , G. Beccari , P. Nicholson , L. Covarelli , P. Benincasa\",\"doi\":\"10.1016/j.fbr.2022.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light plays a crucial role in the growth and development of fungi. Fungal photoperception is controlled by several receptors such as phytochromes, cryptochromes/photolyase, opsins, and light oxygen voltage proteins that can trigger specific responses along the light spectrum. Although the filamentous fungus, <em>Neurospora crassa</em> is a leading research model in photoresponse studies, the analysis of a diverse range of fungal species has led to a better understanding of light signals in growth, reproduction, and secondary metabolism in the Fungi kingdom. In fungal pathogens, light has been demonstrated to be crucial during infection, colonization, and for the successful development of plant diseases. In this review, the most recent findings on the photobiology of the best-studied fungal pathogens of cereals are summarized. In particular, the effects of light on the germination, growth, sporulation, pathogenicity, and secondary metabolism of the most important wheat, barley, maize, and rice pathogens are discussed.</p></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"43 \",\"pages\":\"Article 100291\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461322000495\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461322000495","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Effect of light spectra on cereal fungal pathogens, a review
Light plays a crucial role in the growth and development of fungi. Fungal photoperception is controlled by several receptors such as phytochromes, cryptochromes/photolyase, opsins, and light oxygen voltage proteins that can trigger specific responses along the light spectrum. Although the filamentous fungus, Neurospora crassa is a leading research model in photoresponse studies, the analysis of a diverse range of fungal species has led to a better understanding of light signals in growth, reproduction, and secondary metabolism in the Fungi kingdom. In fungal pathogens, light has been demonstrated to be crucial during infection, colonization, and for the successful development of plant diseases. In this review, the most recent findings on the photobiology of the best-studied fungal pathogens of cereals are summarized. In particular, the effects of light on the germination, growth, sporulation, pathogenicity, and secondary metabolism of the most important wheat, barley, maize, and rice pathogens are discussed.
期刊介绍:
Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.