{"title":"根系生物量和海拔共同调节表层土壤有机碳密度对高寒草甸严重退化的响应","authors":"Hongqin Li, Huimin Geng, Zhitao Zhang, Lubei Yi, Jianhao Wang, Fawei Zhang","doi":"10.1111/gfs.12621","DOIUrl":null,"url":null,"abstract":"<p>Grassland degradation can substantially reduce soil carbon sequestration capacity. However, the effects of grassland degradation on soil organic carbon (SOC) density remain unquantified in high-altitude alpine meadows. In this study, the response and controlling mechanisms of topsoil (0–20 cm) organic carbon were explored in a field survey involving 11 pairs of healthy versus severely degraded plots of high-altitude (above 4000 m) alpine meadows, as well as three short-term (3–5 years) fencing restoration projects, across the source of the Yellow River in August of 2020 and 2021. The results showed that 0–20 cm root biomass, SOC content (SCC), and density (SCD) of healthy meadows averaged 533.7 ± 291.9 g/m<sup>2</sup> (mean ± S.D), 21.17 ± 9.36 g/kg, and 4.54 ± 1.64 kg C/m<sup>2</sup>, respectively. Root biomass, SCC, and SCD were markedly reduced by 63.0%, 33.2%, and 17.6% in severely degraded grassland compared with healthy meadows. The SCC and SCD averaged 7.92 ± 2.21 g/kg and 2.2 ± 0.9 kg C/m<sup>2</sup> in fencing plots, respectively, and were not significantly different from severely degraded meadows, suggesting a limited improvement in SOC from short-term fencing restoration. Analysis of a piecewise structural equation model revealed that the effect of degradation on SCD (indicated by the difference in SCD between paired healthy and degraded meadows) was jointly regulated by the differential surface root biomass and site altitude, with a total positive effect of 0.39 and 0.26, respectively. Our findings indicate the losses of topsoil organic carbon stock caused by grassland degradation are root biomass- and altitude-dependent, supporting the notion that antecedent prevention of degradation, more than subsequent restoration, should be the highest priority in the adaptive management of alpine meadows in harsh high-altitude regions.</p>","PeriodicalId":12767,"journal":{"name":"Grass and Forage Science","volume":"79 1","pages":"69-77"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root biomass and altitude jointly regulate the response of topsoil organic carbon density to severe degradation of high-altitude alpine meadows\",\"authors\":\"Hongqin Li, Huimin Geng, Zhitao Zhang, Lubei Yi, Jianhao Wang, Fawei Zhang\",\"doi\":\"10.1111/gfs.12621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grassland degradation can substantially reduce soil carbon sequestration capacity. However, the effects of grassland degradation on soil organic carbon (SOC) density remain unquantified in high-altitude alpine meadows. In this study, the response and controlling mechanisms of topsoil (0–20 cm) organic carbon were explored in a field survey involving 11 pairs of healthy versus severely degraded plots of high-altitude (above 4000 m) alpine meadows, as well as three short-term (3–5 years) fencing restoration projects, across the source of the Yellow River in August of 2020 and 2021. The results showed that 0–20 cm root biomass, SOC content (SCC), and density (SCD) of healthy meadows averaged 533.7 ± 291.9 g/m<sup>2</sup> (mean ± S.D), 21.17 ± 9.36 g/kg, and 4.54 ± 1.64 kg C/m<sup>2</sup>, respectively. Root biomass, SCC, and SCD were markedly reduced by 63.0%, 33.2%, and 17.6% in severely degraded grassland compared with healthy meadows. The SCC and SCD averaged 7.92 ± 2.21 g/kg and 2.2 ± 0.9 kg C/m<sup>2</sup> in fencing plots, respectively, and were not significantly different from severely degraded meadows, suggesting a limited improvement in SOC from short-term fencing restoration. Analysis of a piecewise structural equation model revealed that the effect of degradation on SCD (indicated by the difference in SCD between paired healthy and degraded meadows) was jointly regulated by the differential surface root biomass and site altitude, with a total positive effect of 0.39 and 0.26, respectively. Our findings indicate the losses of topsoil organic carbon stock caused by grassland degradation are root biomass- and altitude-dependent, supporting the notion that antecedent prevention of degradation, more than subsequent restoration, should be the highest priority in the adaptive management of alpine meadows in harsh high-altitude regions.</p>\",\"PeriodicalId\":12767,\"journal\":{\"name\":\"Grass and Forage Science\",\"volume\":\"79 1\",\"pages\":\"69-77\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grass and Forage Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12621\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass and Forage Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12621","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Root biomass and altitude jointly regulate the response of topsoil organic carbon density to severe degradation of high-altitude alpine meadows
Grassland degradation can substantially reduce soil carbon sequestration capacity. However, the effects of grassland degradation on soil organic carbon (SOC) density remain unquantified in high-altitude alpine meadows. In this study, the response and controlling mechanisms of topsoil (0–20 cm) organic carbon were explored in a field survey involving 11 pairs of healthy versus severely degraded plots of high-altitude (above 4000 m) alpine meadows, as well as three short-term (3–5 years) fencing restoration projects, across the source of the Yellow River in August of 2020 and 2021. The results showed that 0–20 cm root biomass, SOC content (SCC), and density (SCD) of healthy meadows averaged 533.7 ± 291.9 g/m2 (mean ± S.D), 21.17 ± 9.36 g/kg, and 4.54 ± 1.64 kg C/m2, respectively. Root biomass, SCC, and SCD were markedly reduced by 63.0%, 33.2%, and 17.6% in severely degraded grassland compared with healthy meadows. The SCC and SCD averaged 7.92 ± 2.21 g/kg and 2.2 ± 0.9 kg C/m2 in fencing plots, respectively, and were not significantly different from severely degraded meadows, suggesting a limited improvement in SOC from short-term fencing restoration. Analysis of a piecewise structural equation model revealed that the effect of degradation on SCD (indicated by the difference in SCD between paired healthy and degraded meadows) was jointly regulated by the differential surface root biomass and site altitude, with a total positive effect of 0.39 and 0.26, respectively. Our findings indicate the losses of topsoil organic carbon stock caused by grassland degradation are root biomass- and altitude-dependent, supporting the notion that antecedent prevention of degradation, more than subsequent restoration, should be the highest priority in the adaptive management of alpine meadows in harsh high-altitude regions.
期刊介绍:
Grass and Forage Science is a major English language journal that publishes the results of research and development in all aspects of grass and forage production, management and utilization; reviews of the state of knowledge on relevant topics; and book reviews. Authors are also invited to submit papers on non-agricultural aspects of grassland management such as recreational and amenity use and the environmental implications of all grassland systems. The Journal considers papers from all climatic zones.