latipina Poecilia尾鳍的再生:对进行性组织形态发生的见解

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan
{"title":"latipina Poecilia尾鳍的再生:对进行性组织形态发生的见解","authors":"Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan","doi":"10.1080/15476278.2019.1633168","DOIUrl":null,"url":null,"abstract":"ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633168","citationCount":"2","resultStr":"{\"title\":\"Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis\",\"authors\":\"Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan\",\"doi\":\"10.1080/15476278.2019.1633168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15476278.2019.1633168\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2019.1633168\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2019.1633168","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

摘要近年来,以鱼鳍为模型来了解浅形态变化的细微差别的研究越来越受到人们的关注。本研究首次揭示了宽鳍薄鳍藻再生尾鳍组织结构的日常变化。伤口上皮在24hpa内形成,最终在48hpa分层形成顶端上皮帽。在接下来的一天里,增殖细胞聚集在每条鳍鳐的前面,标志着芽质瘤的开始。远端这些细胞通过4dpa表达软骨凝结的迹象。然而,在5 dpa时观察到骨化和随后的放线三丝菌转化为鳞翅目菌。随后,再生以可变的速率生长,直到达到25dpa的原始尺寸。这一结果将为进一步的探索性研究提供有价值的标准参考,这些研究要求在特定的时间点操纵调节信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis
ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信