预计到2060年,中国亚热带次生林的林分碳储量和净初级生产力将增加

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Jia Jin, Wenhua Xiang, Yelin Zeng, Shuai Ouyang, Xiaolu Zhou, Yanting Hu, Zhonghui Zhao, Liang Chen, Pifeng Lei, Xiangwen Deng, Hui Wang, Shirong Liu, Changhui Peng
{"title":"预计到2060年,中国亚热带次生林的林分碳储量和净初级生产力将增加","authors":"Jia Jin,&nbsp;Wenhua Xiang,&nbsp;Yelin Zeng,&nbsp;Shuai Ouyang,&nbsp;Xiaolu Zhou,&nbsp;Yanting Hu,&nbsp;Zhonghui Zhao,&nbsp;Liang Chen,&nbsp;Pifeng Lei,&nbsp;Xiangwen Deng,&nbsp;Hui Wang,&nbsp;Shirong Liu,&nbsp;Changhui Peng","doi":"10.1186/s13021-022-00204-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5).</p><h3>Results</h3><p>The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060.</p><h3>Conclusions</h3><p>The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-022-00204-y","citationCount":"2","resultStr":"{\"title\":\"Stand carbon storage and net primary production in China’s subtropical secondary forests are predicted to increase by 2060\",\"authors\":\"Jia Jin,&nbsp;Wenhua Xiang,&nbsp;Yelin Zeng,&nbsp;Shuai Ouyang,&nbsp;Xiaolu Zhou,&nbsp;Yanting Hu,&nbsp;Zhonghui Zhao,&nbsp;Liang Chen,&nbsp;Pifeng Lei,&nbsp;Xiangwen Deng,&nbsp;Hui Wang,&nbsp;Shirong Liu,&nbsp;Changhui Peng\",\"doi\":\"10.1186/s13021-022-00204-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5).</p><h3>Results</h3><p>The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060.</p><h3>Conclusions</h3><p>The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-022-00204-y\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-022-00204-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-022-00204-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

森林生态系统在固碳、减缓气候变化和实现中国到2060年实现碳(C)中和的目标方面发挥着重要作用。然而,中国亚热带地区天然林C储量和净初级生产量(NPP)的变化与树木生长和未来气候变化有关。利用4种次生林[常绿阔叶林(EBF)、落叶与常绿阔叶混交林(DEF)、落叶阔叶林(DBF)和针叶与阔叶混交林(CDF)]不同恢复阶段的290个调查样地数据,运用TRIPLEX 1.6混合模型预测了未来两种气候变化情景(RCP4.5和RCP8.5)下林分碳储量和NPP的变化。结果利用库存图数据对混合模型进行了校正和验证,结果表明,在当前气候条件下,到2060年,碳储量显著增加,在RCP4.5和RCP8.5气候变化情景下,碳储量增幅更大。与碳储量相比,模拟的EBF和DEF NPP在2014 - 2060年期间略有下降。结论:合理管理中国的亚热带次生林可以被认为是实现中国到2060年实现碳中和目标的步骤之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stand carbon storage and net primary production in China’s subtropical secondary forests are predicted to increase by 2060

Background

Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5).

Results

The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060.

Conclusions

The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信