{"title":"一种用于欧几里得空间准凸多目标最小化的不精确缩放近端方法","authors":"Erik Alex Papa Quiroz, Segundo Cruzado Acuña","doi":"10.15381/PES.V22I1.16125","DOIUrl":null,"url":null,"abstract":"En este artículo presentamos un método de punto proximal escalarizado inexacto para resolver problemas irrestrictos de minimización multiobjetivo cuasiconvexas definidos en espacios Euclidianos, donde las funciones vectoriales son localmente Lipschitz. Bajo algunas hipótesis naturales, probamos que la sucesión generada por el método está bien definida, y converge globalmente. Seguidamente proporcionando al método propuesto dos criterios de error, se obtienen dos variantes del mismo, y se prueba que las sucesiones generadas por cada una de estas variantes, convergen hacia un punto crítico Pareto-Clarke del problema.","PeriodicalId":33010,"journal":{"name":"Pesquimat","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Un método de punto proximal escalarizado inexacto para minimización multiobjetivo cuasi-convexa en espacios Euclidianos\",\"authors\":\"Erik Alex Papa Quiroz, Segundo Cruzado Acuña\",\"doi\":\"10.15381/PES.V22I1.16125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este artículo presentamos un método de punto proximal escalarizado inexacto para resolver problemas irrestrictos de minimización multiobjetivo cuasiconvexas definidos en espacios Euclidianos, donde las funciones vectoriales son localmente Lipschitz. Bajo algunas hipótesis naturales, probamos que la sucesión generada por el método está bien definida, y converge globalmente. Seguidamente proporcionando al método propuesto dos criterios de error, se obtienen dos variantes del mismo, y se prueba que las sucesiones generadas por cada una de estas variantes, convergen hacia un punto crítico Pareto-Clarke del problema.\",\"PeriodicalId\":33010,\"journal\":{\"name\":\"Pesquimat\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquimat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15381/PES.V22I1.16125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquimat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/PES.V22I1.16125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Un método de punto proximal escalarizado inexacto para minimización multiobjetivo cuasi-convexa en espacios Euclidianos
En este artículo presentamos un método de punto proximal escalarizado inexacto para resolver problemas irrestrictos de minimización multiobjetivo cuasiconvexas definidos en espacios Euclidianos, donde las funciones vectoriales son localmente Lipschitz. Bajo algunas hipótesis naturales, probamos que la sucesión generada por el método está bien definida, y converge globalmente. Seguidamente proporcionando al método propuesto dos criterios de error, se obtienen dos variantes del mismo, y se prueba que las sucesiones generadas por cada una de estas variantes, convergen hacia un punto crítico Pareto-Clarke del problema.