K. Su, Ruolin Han, Zheng Zhou, Guang-xin Chen, Qifang Li
{"title":"高介电常数(La + Nb)共掺杂TiO2及其聚偏二氟乙烯复合材料的制备","authors":"K. Su, Ruolin Han, Zheng Zhou, Guang-xin Chen, Qifang Li","doi":"10.1515/epoly-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract Numerous studies have shown that ceramic materials with high dielectric constants and low dielectric losses can be obtained using donor–acceptor-doped TiO2. In this study, (La + Nb)-co-doped TiO2 [(La0.5Nb0.5) x Ti1−x O2 x-LNTO] ceramic powders were prepared using the sol–gel method. XRD demonstrates that LNTO is a rutile phase, and the lattice parameters change after doping, while X-ray photoelectron spectroscopy explains the doping mechanism, with doping of TiO2 producing oxygen vacancies and Ti3+, which form defective dipoles with the dopant ions to increase the dielectric constant of the material. The dielectric properties were investigated by physically co-blending x-LNTO/polyvinylidene difluoride (PVDF) composites. Compared with the TiO2/PVDF composite, the dielectric properties of the x-LNTO/PVDF composite were more excellent. The dielectric constant of 5-LNTO/PVDF reached 36.96, which was higher than that of the TiO2/PVDF composite (19.49) at a filler addition of 60 wt% and a frequency of 1 kHz.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of (La + Nb)-co-doped TiO2 and its polyvinylidene difluoride composites with high dielectric constants\",\"authors\":\"K. Su, Ruolin Han, Zheng Zhou, Guang-xin Chen, Qifang Li\",\"doi\":\"10.1515/epoly-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Numerous studies have shown that ceramic materials with high dielectric constants and low dielectric losses can be obtained using donor–acceptor-doped TiO2. In this study, (La + Nb)-co-doped TiO2 [(La0.5Nb0.5) x Ti1−x O2 x-LNTO] ceramic powders were prepared using the sol–gel method. XRD demonstrates that LNTO is a rutile phase, and the lattice parameters change after doping, while X-ray photoelectron spectroscopy explains the doping mechanism, with doping of TiO2 producing oxygen vacancies and Ti3+, which form defective dipoles with the dopant ions to increase the dielectric constant of the material. The dielectric properties were investigated by physically co-blending x-LNTO/polyvinylidene difluoride (PVDF) composites. Compared with the TiO2/PVDF composite, the dielectric properties of the x-LNTO/PVDF composite were more excellent. The dielectric constant of 5-LNTO/PVDF reached 36.96, which was higher than that of the TiO2/PVDF composite (19.49) at a filler addition of 60 wt% and a frequency of 1 kHz.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0021\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Preparation of (La + Nb)-co-doped TiO2 and its polyvinylidene difluoride composites with high dielectric constants
Abstract Numerous studies have shown that ceramic materials with high dielectric constants and low dielectric losses can be obtained using donor–acceptor-doped TiO2. In this study, (La + Nb)-co-doped TiO2 [(La0.5Nb0.5) x Ti1−x O2 x-LNTO] ceramic powders were prepared using the sol–gel method. XRD demonstrates that LNTO is a rutile phase, and the lattice parameters change after doping, while X-ray photoelectron spectroscopy explains the doping mechanism, with doping of TiO2 producing oxygen vacancies and Ti3+, which form defective dipoles with the dopant ions to increase the dielectric constant of the material. The dielectric properties were investigated by physically co-blending x-LNTO/polyvinylidene difluoride (PVDF) composites. Compared with the TiO2/PVDF composite, the dielectric properties of the x-LNTO/PVDF composite were more excellent. The dielectric constant of 5-LNTO/PVDF reached 36.96, which was higher than that of the TiO2/PVDF composite (19.49) at a filler addition of 60 wt% and a frequency of 1 kHz.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.