{"title":"调节阳离子聚合:从结构控制到生命周期管理","authors":"Lianqian Wu, Brayan Rondon, Shoshana Dym, Wenqi Wang, Kuiru Chen, Jia Niu","doi":"10.1016/j.progpolymsci.2023.101736","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cationic polymerization is a powerful strategy for the production of well-defined polymers and </span>advanced materials. In particular, the emergence of </span>living cationic polymerization<span><span><span><span><span> has enabled pathways to complex polymer architectures inaccessible before. The use of light and electricity as external stimuli to regulate cationic polymerization represents another advance with increasing applications in surface fabrication and patterning, </span>additive manufacturing, and other advanced material engineering. The past decade also witnessed vigorous progress in stereoselective cationic polymerizations, allowing for the dual control of both the tacticity and the </span>molecular weight<span> of vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis and achieving a circular materials economy, cationic polymerization offers unique advantages for generating chemically recyclable polymers, such as polyacetals, </span></span>polysaccharides, polyvinyl ethers, and </span>polyethers. In this review, we provide an overview of recent developments in regulating cationic polymerization, including emerging control systems, spatiotemporally controlled polymerization (light and electricity), stereoselective polymerization, and chemically recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for the further development of cationic polymerization for researchers in the field of polymer science and beyond.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"145 ","pages":"Article 101736"},"PeriodicalIF":26.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regulating cationic polymerization: From structural control to life cycle management\",\"authors\":\"Lianqian Wu, Brayan Rondon, Shoshana Dym, Wenqi Wang, Kuiru Chen, Jia Niu\",\"doi\":\"10.1016/j.progpolymsci.2023.101736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Cationic polymerization is a powerful strategy for the production of well-defined polymers and </span>advanced materials. In particular, the emergence of </span>living cationic polymerization<span><span><span><span><span> has enabled pathways to complex polymer architectures inaccessible before. The use of light and electricity as external stimuli to regulate cationic polymerization represents another advance with increasing applications in surface fabrication and patterning, </span>additive manufacturing, and other advanced material engineering. The past decade also witnessed vigorous progress in stereoselective cationic polymerizations, allowing for the dual control of both the tacticity and the </span>molecular weight<span> of vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis and achieving a circular materials economy, cationic polymerization offers unique advantages for generating chemically recyclable polymers, such as polyacetals, </span></span>polysaccharides, polyvinyl ethers, and </span>polyethers. In this review, we provide an overview of recent developments in regulating cationic polymerization, including emerging control systems, spatiotemporally controlled polymerization (light and electricity), stereoselective polymerization, and chemically recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for the further development of cationic polymerization for researchers in the field of polymer science and beyond.</span></p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"145 \",\"pages\":\"Article 101736\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670023000904\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Regulating cationic polymerization: From structural control to life cycle management
Cationic polymerization is a powerful strategy for the production of well-defined polymers and advanced materials. In particular, the emergence of living cationic polymerization has enabled pathways to complex polymer architectures inaccessible before. The use of light and electricity as external stimuli to regulate cationic polymerization represents another advance with increasing applications in surface fabrication and patterning, additive manufacturing, and other advanced material engineering. The past decade also witnessed vigorous progress in stereoselective cationic polymerizations, allowing for the dual control of both the tacticity and the molecular weight of vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis and achieving a circular materials economy, cationic polymerization offers unique advantages for generating chemically recyclable polymers, such as polyacetals, polysaccharides, polyvinyl ethers, and polyethers. In this review, we provide an overview of recent developments in regulating cationic polymerization, including emerging control systems, spatiotemporally controlled polymerization (light and electricity), stereoselective polymerization, and chemically recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for the further development of cationic polymerization for researchers in the field of polymer science and beyond.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.