{"title":"平滑伪Wigner-Ville分布的灰度共现矩阵用于认知工作量估计","authors":"Rezvan Mirzaeian , Peyvand Ghaderyan","doi":"10.1016/j.bbe.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic, cost-effective, and reliable cognitive workload estimation (CWE) is one of the important issues in diagnosis and treatment of neurocognitive diseases, cognitive performance improvement and error preventive strategies. To address this issue, this paper has proposed a novel and robust CWE method by detecting the time–frequency (TF) changes of electrodermal activities (EDA). Firstly, the local and global properties of the time-variant characteristics of EDA have been presented using Smooth Pseudo Wigner-Ville distribution with enhanced TF resolution. Then, the transient changes in TF images of EDA signals have been quantified using a set of textural features based on Gray Level Co-occurrence Matrix descriptor (GLCM). Several static and dynamic classifiers, such as support vector machine, K- k-nearest neighbor, cascade forward neural network, and recurrent neural network have been explored. A real EDA data experiment recorded during arithmetic task with different workload levels have been used to evaluate the performance of the proposed method. The obtained results have confirmed that it can achieve a high estimation performance of 97.71% using contrast feature for discrimination of three workload levels. Further analysis has also suggested that the model is robust to GLCM parameters and classifiers and can provide a better tradeoff between computational complexity and high performance using minimum number of textural features in comparison with previous studies.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gray-level co-occurrence matrix of Smooth Pseudo Wigner-Ville distribution for cognitive workload estimation\",\"authors\":\"Rezvan Mirzaeian , Peyvand Ghaderyan\",\"doi\":\"10.1016/j.bbe.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automatic, cost-effective, and reliable cognitive workload estimation (CWE) is one of the important issues in diagnosis and treatment of neurocognitive diseases, cognitive performance improvement and error preventive strategies. To address this issue, this paper has proposed a novel and robust CWE method by detecting the time–frequency (TF) changes of electrodermal activities (EDA). Firstly, the local and global properties of the time-variant characteristics of EDA have been presented using Smooth Pseudo Wigner-Ville distribution with enhanced TF resolution. Then, the transient changes in TF images of EDA signals have been quantified using a set of textural features based on Gray Level Co-occurrence Matrix descriptor (GLCM). Several static and dynamic classifiers, such as support vector machine, K- k-nearest neighbor, cascade forward neural network, and recurrent neural network have been explored. A real EDA data experiment recorded during arithmetic task with different workload levels have been used to evaluate the performance of the proposed method. The obtained results have confirmed that it can achieve a high estimation performance of 97.71% using contrast feature for discrimination of three workload levels. Further analysis has also suggested that the model is robust to GLCM parameters and classifiers and can provide a better tradeoff between computational complexity and high performance using minimum number of textural features in comparison with previous studies.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000013\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Gray-level co-occurrence matrix of Smooth Pseudo Wigner-Ville distribution for cognitive workload estimation
Automatic, cost-effective, and reliable cognitive workload estimation (CWE) is one of the important issues in diagnosis and treatment of neurocognitive diseases, cognitive performance improvement and error preventive strategies. To address this issue, this paper has proposed a novel and robust CWE method by detecting the time–frequency (TF) changes of electrodermal activities (EDA). Firstly, the local and global properties of the time-variant characteristics of EDA have been presented using Smooth Pseudo Wigner-Ville distribution with enhanced TF resolution. Then, the transient changes in TF images of EDA signals have been quantified using a set of textural features based on Gray Level Co-occurrence Matrix descriptor (GLCM). Several static and dynamic classifiers, such as support vector machine, K- k-nearest neighbor, cascade forward neural network, and recurrent neural network have been explored. A real EDA data experiment recorded during arithmetic task with different workload levels have been used to evaluate the performance of the proposed method. The obtained results have confirmed that it can achieve a high estimation performance of 97.71% using contrast feature for discrimination of three workload levels. Further analysis has also suggested that the model is robust to GLCM parameters and classifiers and can provide a better tradeoff between computational complexity and high performance using minimum number of textural features in comparison with previous studies.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.