{"title":"Ba2ScRuO6的磁性和交换偏压特性","authors":"P. Mohanty, S. Marik, R. P. Singh","doi":"10.3390/magnetochemistry9060144","DOIUrl":null,"url":null,"abstract":"This paper presents structural, detailed magnetic, and exchange bias studies in polycrystalline Ba2ScRuO6 synthesized at ambient pressure. In contrast to its strontium analogue, this material crystallizes in a 6L hexagonal structure with space group P3¯m1. The Rietveld refinement using the room-temperature powder XRD pattern suggests a Ru-Sc disorder in the structure. The temperature variation of the DC electrical resistivity highlights a semiconducting behavior with the electron conduction corresponding to Mott’s 3D variable range hopping (VRH) model. The detailed magnetization measurements show that Ba2ScRuO6 develops antiferromagnetic ordering at TN≈ 9 K. Interestingly, below 9 K (TN), the field-cooled magnetic field variation (FC) of the magnetization curves highlights an exchange bias effect in the sample. The exchange bias field reaches a maximum value of 1.24 kOe at 2 K. The exchange bias effect below the magnetic ordering temperature can be attributed to the inhomogeneous magnetic correlations due to the disorder in the structure. Remarkably, the appearance of a large exchange bias field in Ba2ScRuO6 indicates that inhomogeneous hexagonal double perovskites are a promising class to explore new materials having potential applications in spintronics.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetism and Exchange Bias Properties in Ba2ScRuO6\",\"authors\":\"P. Mohanty, S. Marik, R. P. Singh\",\"doi\":\"10.3390/magnetochemistry9060144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents structural, detailed magnetic, and exchange bias studies in polycrystalline Ba2ScRuO6 synthesized at ambient pressure. In contrast to its strontium analogue, this material crystallizes in a 6L hexagonal structure with space group P3¯m1. The Rietveld refinement using the room-temperature powder XRD pattern suggests a Ru-Sc disorder in the structure. The temperature variation of the DC electrical resistivity highlights a semiconducting behavior with the electron conduction corresponding to Mott’s 3D variable range hopping (VRH) model. The detailed magnetization measurements show that Ba2ScRuO6 develops antiferromagnetic ordering at TN≈ 9 K. Interestingly, below 9 K (TN), the field-cooled magnetic field variation (FC) of the magnetization curves highlights an exchange bias effect in the sample. The exchange bias field reaches a maximum value of 1.24 kOe at 2 K. The exchange bias effect below the magnetic ordering temperature can be attributed to the inhomogeneous magnetic correlations due to the disorder in the structure. Remarkably, the appearance of a large exchange bias field in Ba2ScRuO6 indicates that inhomogeneous hexagonal double perovskites are a promising class to explore new materials having potential applications in spintronics.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9060144\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060144","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Magnetism and Exchange Bias Properties in Ba2ScRuO6
This paper presents structural, detailed magnetic, and exchange bias studies in polycrystalline Ba2ScRuO6 synthesized at ambient pressure. In contrast to its strontium analogue, this material crystallizes in a 6L hexagonal structure with space group P3¯m1. The Rietveld refinement using the room-temperature powder XRD pattern suggests a Ru-Sc disorder in the structure. The temperature variation of the DC electrical resistivity highlights a semiconducting behavior with the electron conduction corresponding to Mott’s 3D variable range hopping (VRH) model. The detailed magnetization measurements show that Ba2ScRuO6 develops antiferromagnetic ordering at TN≈ 9 K. Interestingly, below 9 K (TN), the field-cooled magnetic field variation (FC) of the magnetization curves highlights an exchange bias effect in the sample. The exchange bias field reaches a maximum value of 1.24 kOe at 2 K. The exchange bias effect below the magnetic ordering temperature can be attributed to the inhomogeneous magnetic correlations due to the disorder in the structure. Remarkably, the appearance of a large exchange bias field in Ba2ScRuO6 indicates that inhomogeneous hexagonal double perovskites are a promising class to explore new materials having potential applications in spintronics.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.