Venu G. Bandi, Michael P. Luciano, Mara Saccomano, Nimit L. Patel, Thomas S. Bischof, Jakob G. P. Lingg, Peter T. Tsrunchev, Meredith N. Nix, Bastian Ruehle, Chelsea Sanders, Lisa Riffle, Christina M. Robinson, Simone Difilippantonio, Joseph D. Kalen, Ute Resch-Genger, Joseph Ivanic, Oliver T. Bruns, Martin J. Schnermann
{"title":"在1000纳米以上的目标多色体内成像是由非花青素实现的","authors":"Venu G. Bandi, Michael P. Luciano, Mara Saccomano, Nimit L. Patel, Thomas S. Bischof, Jakob G. P. Lingg, Peter T. Tsrunchev, Meredith N. Nix, Bastian Ruehle, Chelsea Sanders, Lisa Riffle, Christina M. Robinson, Simone Difilippantonio, Joseph D. Kalen, Ute Resch-Genger, Joseph Ivanic, Oliver T. Bruns, Martin J. Schnermann","doi":"10.1038/s41592-022-01394-6","DOIUrl":null,"url":null,"abstract":"Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. Rational design was used to develop a suite of red-shifted, bioconjugatable heptamethine cyanine dyes for multiplexed in vivo imaging in the shortwave-infrared/near-infrared-II region.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"19 3","pages":"353-358"},"PeriodicalIF":36.1000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines\",\"authors\":\"Venu G. Bandi, Michael P. Luciano, Mara Saccomano, Nimit L. Patel, Thomas S. Bischof, Jakob G. P. Lingg, Peter T. Tsrunchev, Meredith N. Nix, Bastian Ruehle, Chelsea Sanders, Lisa Riffle, Christina M. Robinson, Simone Difilippantonio, Joseph D. Kalen, Ute Resch-Genger, Joseph Ivanic, Oliver T. Bruns, Martin J. Schnermann\",\"doi\":\"10.1038/s41592-022-01394-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. Rational design was used to develop a suite of red-shifted, bioconjugatable heptamethine cyanine dyes for multiplexed in vivo imaging in the shortwave-infrared/near-infrared-II region.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"19 3\",\"pages\":\"353-358\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-022-01394-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-022-01394-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines
Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. Rational design was used to develop a suite of red-shifted, bioconjugatable heptamethine cyanine dyes for multiplexed in vivo imaging in the shortwave-infrared/near-infrared-II region.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.