含胸腺氧基的新型酞菁的合成、表征、光物理和光化学性质

IF 1.6 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Rovshen Atajanov, Khaoula Khezami, Mahmut Durmuş, Zafer Odabaş
{"title":"含胸腺氧基的新型酞菁的合成、表征、光物理和光化学性质","authors":"Rovshen Atajanov,&nbsp;Khaoula Khezami,&nbsp;Mahmut Durmuş,&nbsp;Zafer Odabaş","doi":"10.1007/s11243-023-00525-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, new 4-chloro-5-(2-isopropyl-5-methylphenoxy)phthalonitrile compound, containing bioactive thymoxy group, and its metal-free phthalocyanine and metallo-phthalocyanine derivatives were synthesized for the first time. Their structures were determined by spectroscopic methods such as FTIR, UV–<i>Vis</i>, <sup>1</sup>H-, and <sup>13</sup>C-NMR (for phthalonitrile derivative), MALDI-TOF mass spectrometry (for phthalocyanine derivatives) and elemental analysis as well. The phthalocyanines showed excellent solubility in polar and nonpolar solvents without aggregation and absorb at long wavelengths with their high molar coefficient. In N,N-dimethylformamide, the effects of the type of central metal ions [metal-free, indium(III) acetate, lutetium(III) acetate, magnesium(II) or zinc(II)] in the phthalocyanine, containing bioactive thymoxy group, cavity on the spectroscopic, photophysical, and photochemical properties of the phthalocyanines were determined. These features are compared with each other. Lutetium(III) acetate phthalocyanine did not show any fluorescence, while metal-free phthalocyanine and indium(III) acetate phthalocyanine showed low fluorescence. It was determined that magnesium phthalocyanine significantly enriched the fluorescence, and zinc phthalocyanine had appropriate and sufficient fluorescence. Lutetium(III) acetate and zinc(II), especially indium(III) acetate phthalocyanines, could produce large amounts of singlet oxygen. Metal-free and magnesium phthalocyanines had the capacity to produce sufficient singlet oxygen (it means production of enough amount of singlet oxygen by a photosensitizer candidate during PDT applications). All phthalocyanines have sufficient and suitable photostability (it means an ideal photosensitizer should be stable under light irradiation until complete its PDT activation, and it should be decomposed after its PDT activation so that it does not accumulate in the body). With these determined properties, magnesium(II), especially indium(III) acetate and zinc(II) phthalocyanines, may be suitable candidates as type II photosensitizers for photodynamic therapy applications. Lutetium(III) acetate phthalocyanine may be a photosensitizer candidate in photocatalytic applications.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11243-023-00525-y.pdf","citationCount":"2","resultStr":"{\"title\":\"Synthesis, characterization, photophysical, and photochemical properties of novel phthalocyanines containing thymoxy groups as bioactive units\",\"authors\":\"Rovshen Atajanov,&nbsp;Khaoula Khezami,&nbsp;Mahmut Durmuş,&nbsp;Zafer Odabaş\",\"doi\":\"10.1007/s11243-023-00525-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, new 4-chloro-5-(2-isopropyl-5-methylphenoxy)phthalonitrile compound, containing bioactive thymoxy group, and its metal-free phthalocyanine and metallo-phthalocyanine derivatives were synthesized for the first time. Their structures were determined by spectroscopic methods such as FTIR, UV–<i>Vis</i>, <sup>1</sup>H-, and <sup>13</sup>C-NMR (for phthalonitrile derivative), MALDI-TOF mass spectrometry (for phthalocyanine derivatives) and elemental analysis as well. The phthalocyanines showed excellent solubility in polar and nonpolar solvents without aggregation and absorb at long wavelengths with their high molar coefficient. In N,N-dimethylformamide, the effects of the type of central metal ions [metal-free, indium(III) acetate, lutetium(III) acetate, magnesium(II) or zinc(II)] in the phthalocyanine, containing bioactive thymoxy group, cavity on the spectroscopic, photophysical, and photochemical properties of the phthalocyanines were determined. These features are compared with each other. Lutetium(III) acetate phthalocyanine did not show any fluorescence, while metal-free phthalocyanine and indium(III) acetate phthalocyanine showed low fluorescence. It was determined that magnesium phthalocyanine significantly enriched the fluorescence, and zinc phthalocyanine had appropriate and sufficient fluorescence. Lutetium(III) acetate and zinc(II), especially indium(III) acetate phthalocyanines, could produce large amounts of singlet oxygen. Metal-free and magnesium phthalocyanines had the capacity to produce sufficient singlet oxygen (it means production of enough amount of singlet oxygen by a photosensitizer candidate during PDT applications). All phthalocyanines have sufficient and suitable photostability (it means an ideal photosensitizer should be stable under light irradiation until complete its PDT activation, and it should be decomposed after its PDT activation so that it does not accumulate in the body). With these determined properties, magnesium(II), especially indium(III) acetate and zinc(II) phthalocyanines, may be suitable candidates as type II photosensitizers for photodynamic therapy applications. Lutetium(III) acetate phthalocyanine may be a photosensitizer candidate in photocatalytic applications.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11243-023-00525-y.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00525-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00525-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 2

摘要

本研究首次合成了新的含生物活性胸腺氧基的4-氯-5-(2-异丙基-5-甲基苯氧基)酞腈化合物及其无金属酞菁和金属酞菁衍生物。通过FTIR、UV-Vis、1H- nmr、13C-NMR(酞菁衍生物)、MALDI-TOF质谱(酞菁衍生物)和元素分析等光谱方法确定了它们的结构。酞菁在极性和非极性溶剂中均表现出良好的溶解度,无聚集,且具有高摩尔系数的长波吸收。在N,N-二甲基甲酰胺中,测定了含生物活性胸腺氧基的酞菁中中心金属离子类型[无金属、醋酸铟(III)、醋酸镥(III)、镁(II)或锌(II)]对酞菁光谱、光物理和光化学性质的影响。这些特征相互比较。乙酸镥(III)酞菁不显示荧光,无金属酞菁和乙酸铟(III)酞菁显示低荧光。结果表明,酞菁镁显著增强荧光,酞菁锌荧光适当且充分。乙酸镥(III)和锌(II),特别是乙酸铟(III)酞菁可以产生大量的单线态氧。无金属和镁酞菁具有产生足够单线态氧的能力(这意味着在PDT应用过程中,光敏剂候选物产生足够数量的单线态氧)。所有的酞青素都具有足够和合适的光稳定性(即理想的光敏剂在光照射下应稳定,直至完成PDT活化,PDT活化后应分解,以免在体内积累)。有了这些确定的性质,镁(II),特别是醋酸铟(III)和酞菁锌(II),可能是光动力治疗应用的II型光敏剂的合适人选。醋酸镥(III)酞菁可能是光催化应用的光敏剂候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis, characterization, photophysical, and photochemical properties of novel phthalocyanines containing thymoxy groups as bioactive units

Synthesis, characterization, photophysical, and photochemical properties of novel phthalocyanines containing thymoxy groups as bioactive units

In this study, new 4-chloro-5-(2-isopropyl-5-methylphenoxy)phthalonitrile compound, containing bioactive thymoxy group, and its metal-free phthalocyanine and metallo-phthalocyanine derivatives were synthesized for the first time. Their structures were determined by spectroscopic methods such as FTIR, UV–Vis, 1H-, and 13C-NMR (for phthalonitrile derivative), MALDI-TOF mass spectrometry (for phthalocyanine derivatives) and elemental analysis as well. The phthalocyanines showed excellent solubility in polar and nonpolar solvents without aggregation and absorb at long wavelengths with their high molar coefficient. In N,N-dimethylformamide, the effects of the type of central metal ions [metal-free, indium(III) acetate, lutetium(III) acetate, magnesium(II) or zinc(II)] in the phthalocyanine, containing bioactive thymoxy group, cavity on the spectroscopic, photophysical, and photochemical properties of the phthalocyanines were determined. These features are compared with each other. Lutetium(III) acetate phthalocyanine did not show any fluorescence, while metal-free phthalocyanine and indium(III) acetate phthalocyanine showed low fluorescence. It was determined that magnesium phthalocyanine significantly enriched the fluorescence, and zinc phthalocyanine had appropriate and sufficient fluorescence. Lutetium(III) acetate and zinc(II), especially indium(III) acetate phthalocyanines, could produce large amounts of singlet oxygen. Metal-free and magnesium phthalocyanines had the capacity to produce sufficient singlet oxygen (it means production of enough amount of singlet oxygen by a photosensitizer candidate during PDT applications). All phthalocyanines have sufficient and suitable photostability (it means an ideal photosensitizer should be stable under light irradiation until complete its PDT activation, and it should be decomposed after its PDT activation so that it does not accumulate in the body). With these determined properties, magnesium(II), especially indium(III) acetate and zinc(II) phthalocyanines, may be suitable candidates as type II photosensitizers for photodynamic therapy applications. Lutetium(III) acetate phthalocyanine may be a photosensitizer candidate in photocatalytic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transition Metal Chemistry
Transition Metal Chemistry 化学-无机化学与核化学
CiteScore
3.60
自引率
0.00%
发文量
32
审稿时长
1.3 months
期刊介绍: Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc. Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信