组合优化的聚类方法

Iwan Fadilah, R. S. Witiastuti
{"title":"组合优化的聚类方法","authors":"Iwan Fadilah, R. S. Witiastuti","doi":"10.15294/MAJ.V7I4.23378","DOIUrl":null,"url":null,"abstract":"This study aims to test the formation of the optimum portfolio using the cluster method. The data used are of financial statements and stock prices of the companies listed on the LQ-45. index The results of this research show that the cluster method can be used to form the optimal portfolio. This is because using the cluster method; the research samples were divided into three clusters that are united to the same characteristics of each company. Further research can be added the research indicators and research sample used in order that the results obtained are more varied.","PeriodicalId":31589,"journal":{"name":"Management Analysis Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clustering Method Approach for Portfolio Optimization\",\"authors\":\"Iwan Fadilah, R. S. Witiastuti\",\"doi\":\"10.15294/MAJ.V7I4.23378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to test the formation of the optimum portfolio using the cluster method. The data used are of financial statements and stock prices of the companies listed on the LQ-45. index The results of this research show that the cluster method can be used to form the optimal portfolio. This is because using the cluster method; the research samples were divided into three clusters that are united to the same characteristics of each company. Further research can be added the research indicators and research sample used in order that the results obtained are more varied.\",\"PeriodicalId\":31589,\"journal\":{\"name\":\"Management Analysis Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Management Analysis Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/MAJ.V7I4.23378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management Analysis Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/MAJ.V7I4.23378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用聚类方法检验最优投资组合的形成。使用的数据是LQ-45上市公司的财务报表和股票价格。研究结果表明,聚类方法可以形成最优投资组合。这是因为使用聚类方法;研究样本被分为三个集群,每个集群联合到每个公司的相同特征。进一步的研究可以增加研究指标和使用的研究样本,使得到的结果更加多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clustering Method Approach for Portfolio Optimization
This study aims to test the formation of the optimum portfolio using the cluster method. The data used are of financial statements and stock prices of the companies listed on the LQ-45. index The results of this research show that the cluster method can be used to form the optimal portfolio. This is because using the cluster method; the research samples were divided into three clusters that are united to the same characteristics of each company. Further research can be added the research indicators and research sample used in order that the results obtained are more varied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信