一种识别和描绘空间聚集的新方法及其在风险投资创业公司中的应用

IF 3.1 2区 经济学 Q1 ECONOMICS
Edward J. Egan, James A. Brander
{"title":"一种识别和描绘空间聚集的新方法及其在风险投资创业公司中的应用","authors":"Edward J. Egan, James A. Brander","doi":"10.1093/jeg/lbac024","DOIUrl":null,"url":null,"abstract":"\n This article advances a new approach using hierarchical cluster analysis (HCA) for identifying and delineating spatial agglomerations and applies it to venture-backed startups. HCA identifies nested clusters at varying aggregation levels. We describe two methods for selecting a particular aggregation level and the associated agglomerations. The ‘elbow method’ relies entirely on geographic information. Our preferred method, the ‘regression method’, uses geographic information and venture capital investment data and identifies finer agglomerations, often the size of a small neighborhood. We use heat maps to illustrate how agglomerations evolve and we describe how our methods can help assess agglomeration support policies.","PeriodicalId":48251,"journal":{"name":"Journal of Economic Geography","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for identifying and delineating spatial agglomerations with application to venture-backed startups\",\"authors\":\"Edward J. Egan, James A. Brander\",\"doi\":\"10.1093/jeg/lbac024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article advances a new approach using hierarchical cluster analysis (HCA) for identifying and delineating spatial agglomerations and applies it to venture-backed startups. HCA identifies nested clusters at varying aggregation levels. We describe two methods for selecting a particular aggregation level and the associated agglomerations. The ‘elbow method’ relies entirely on geographic information. Our preferred method, the ‘regression method’, uses geographic information and venture capital investment data and identifies finer agglomerations, often the size of a small neighborhood. We use heat maps to illustrate how agglomerations evolve and we describe how our methods can help assess agglomeration support policies.\",\"PeriodicalId\":48251,\"journal\":{\"name\":\"Journal of Economic Geography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Geography\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/jeg/lbac024\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Geography","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jeg/lbac024","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用层次聚类分析(HCA)来识别和描绘空间聚集的新方法,并将其应用于风险支持的初创公司。HCA识别不同聚合级别的嵌套集群。我们描述了两种选择特定聚集水平和相关聚集的方法。“肘法”完全依赖于地理信息。我们的首选方法,“回归法”,使用地理信息和风险投资数据,确定更精细的聚集区,通常是一个小社区的大小。我们使用热图来说明集聚是如何演变的,并描述我们的方法如何帮助评估集聚支持政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for identifying and delineating spatial agglomerations with application to venture-backed startups
This article advances a new approach using hierarchical cluster analysis (HCA) for identifying and delineating spatial agglomerations and applies it to venture-backed startups. HCA identifies nested clusters at varying aggregation levels. We describe two methods for selecting a particular aggregation level and the associated agglomerations. The ‘elbow method’ relies entirely on geographic information. Our preferred method, the ‘regression method’, uses geographic information and venture capital investment data and identifies finer agglomerations, often the size of a small neighborhood. We use heat maps to illustrate how agglomerations evolve and we describe how our methods can help assess agglomeration support policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
6.90%
发文量
33
期刊介绍: The aims of the Journal of Economic Geography are to redefine and reinvigorate the intersection between economics and geography, and to provide a world-class journal in the field. The journal is steered by a distinguished team of Editors and an Editorial Board, drawn equally from the two disciplines. It publishes original academic research and discussion of the highest scholarly standard in the field of ''economic geography'' broadly defined. Submitted papers are refereed, and are evaluated on the basis of their creativity, quality of scholarship, and contribution to advancing understanding of the geographic nature of economic systems and global economic change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信