Zhiyuan Ma, Zijian Zhao, Chang-Yi Liu, Fang Yang, Mou Wang
{"title":"极端气候对电力系统的影响和适应:来自德克萨斯州极端寒潮造成的停电的启示","authors":"Zhiyuan Ma, Zijian Zhao, Chang-Yi Liu, Fang Yang, Mou Wang","doi":"10.1142/s234574812250004x","DOIUrl":null,"url":null,"abstract":"Along with the aggravation of climate change, various weather and climate extreme events (abbreviated as climate extremes) are becoming more frequent. During the transition to the use of clean energy, the power system will show increasingly prominent features such as high ratio of clean energy, high ratio of electrification, and a high proportion of electric and electronic equipment, coupled with summer and winter load peaks. Against this backdrop, this paper studies the impacts of climate extremes on the power system using the Texas power outage as an example, and proposes general adaptation measures to cope with climate extremes. For a start, this paper reviews the power outage in Texas caused by an extreme cold wave across the North America in 2021, and conducts an in-depth analysis of its causes. Then, based on the theoretical framework of disaster risk management, this paper analyzes the weather and climate disaster risks, extreme events, exposure, and vulnerability faced by the power system in the context of climate change and extreme events. Finally, in order to build a new power system, this paper establishes an overall framework for the power system to mitigate and adapt to climate change, and summarizes the key techniques involved in power generation, transmission, distribution, and consumption, as well as key technologies in the fields of power supply, power grid, power load, and energy storage, and the strategies and measures for addressing climate change.","PeriodicalId":43051,"journal":{"name":"Chinese Journal of Urban and Environmental Studies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Impacts and Adaptation of Climate Extremes on the Power System: Insights from the Texas Power Outage Caused by Extreme Cold Wave\",\"authors\":\"Zhiyuan Ma, Zijian Zhao, Chang-Yi Liu, Fang Yang, Mou Wang\",\"doi\":\"10.1142/s234574812250004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the aggravation of climate change, various weather and climate extreme events (abbreviated as climate extremes) are becoming more frequent. During the transition to the use of clean energy, the power system will show increasingly prominent features such as high ratio of clean energy, high ratio of electrification, and a high proportion of electric and electronic equipment, coupled with summer and winter load peaks. Against this backdrop, this paper studies the impacts of climate extremes on the power system using the Texas power outage as an example, and proposes general adaptation measures to cope with climate extremes. For a start, this paper reviews the power outage in Texas caused by an extreme cold wave across the North America in 2021, and conducts an in-depth analysis of its causes. Then, based on the theoretical framework of disaster risk management, this paper analyzes the weather and climate disaster risks, extreme events, exposure, and vulnerability faced by the power system in the context of climate change and extreme events. Finally, in order to build a new power system, this paper establishes an overall framework for the power system to mitigate and adapt to climate change, and summarizes the key techniques involved in power generation, transmission, distribution, and consumption, as well as key technologies in the fields of power supply, power grid, power load, and energy storage, and the strategies and measures for addressing climate change.\",\"PeriodicalId\":43051,\"journal\":{\"name\":\"Chinese Journal of Urban and Environmental Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Urban and Environmental Studies\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1142/s234574812250004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"URBAN STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Urban and Environmental Studies","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1142/s234574812250004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"URBAN STUDIES","Score":null,"Total":0}
The Impacts and Adaptation of Climate Extremes on the Power System: Insights from the Texas Power Outage Caused by Extreme Cold Wave
Along with the aggravation of climate change, various weather and climate extreme events (abbreviated as climate extremes) are becoming more frequent. During the transition to the use of clean energy, the power system will show increasingly prominent features such as high ratio of clean energy, high ratio of electrification, and a high proportion of electric and electronic equipment, coupled with summer and winter load peaks. Against this backdrop, this paper studies the impacts of climate extremes on the power system using the Texas power outage as an example, and proposes general adaptation measures to cope with climate extremes. For a start, this paper reviews the power outage in Texas caused by an extreme cold wave across the North America in 2021, and conducts an in-depth analysis of its causes. Then, based on the theoretical framework of disaster risk management, this paper analyzes the weather and climate disaster risks, extreme events, exposure, and vulnerability faced by the power system in the context of climate change and extreme events. Finally, in order to build a new power system, this paper establishes an overall framework for the power system to mitigate and adapt to climate change, and summarizes the key techniques involved in power generation, transmission, distribution, and consumption, as well as key technologies in the fields of power supply, power grid, power load, and energy storage, and the strategies and measures for addressing climate change.