利用遗传算法优化具有运输约束的灵活作业车间问题的最大跨度

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY
T. A. Castillo, C. E. Díaz B., J. D. Gomez, E. Orduz, M. Niño
{"title":"利用遗传算法优化具有运输约束的灵活作业车间问题的最大跨度","authors":"T. A. Castillo, C. E. Díaz B., J. D. Gomez, E. Orduz, M. Niño","doi":"10.31908/19098367.3820","DOIUrl":null,"url":null,"abstract":"We solved the Flexible Job Shop Scheduling Problem (FJSSP) with transportation constraints in order to minimize the makespan by sequencing and assigning machines. A bibliographic review was made in order to guide the methodology to be used. From there, we approached the problem with a genetic algorithm. We validated its eff ectiveness by comparing the results obtained with different instances proposed in the literature. The results obtained show that the proposed genetic algorithm is efficient in the different classic Job Shop configurations tested. The algorithm is able to find very approximate solutions to the best found to date for the Flexible Job Shop Scheduling Problem with transportation constraints.","PeriodicalId":41325,"journal":{"name":"ENTRE CIENCIA E INGENIERIA","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimización del makespan en el problema de Job Shop Flexible con restricciones de transporte usando Algoritmos Genéticos\",\"authors\":\"T. A. Castillo, C. E. Díaz B., J. D. Gomez, E. Orduz, M. Niño\",\"doi\":\"10.31908/19098367.3820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solved the Flexible Job Shop Scheduling Problem (FJSSP) with transportation constraints in order to minimize the makespan by sequencing and assigning machines. A bibliographic review was made in order to guide the methodology to be used. From there, we approached the problem with a genetic algorithm. We validated its eff ectiveness by comparing the results obtained with different instances proposed in the literature. The results obtained show that the proposed genetic algorithm is efficient in the different classic Job Shop configurations tested. The algorithm is able to find very approximate solutions to the best found to date for the Flexible Job Shop Scheduling Problem with transportation constraints.\",\"PeriodicalId\":41325,\"journal\":{\"name\":\"ENTRE CIENCIA E INGENIERIA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ENTRE CIENCIA E INGENIERIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31908/19098367.3820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENTRE CIENCIA E INGENIERIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31908/19098367.3820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了通过排序和分配机器来最小化完工时间,我们解决了具有运输约束的柔性车间调度问题。为了指导所使用的方法,对书目进行了审查。从那时起,我们用遗传算法来解决这个问题。我们通过比较文献中提出的不同实例的结果来验证其有效性。结果表明,所提出的遗传算法在测试的不同经典Job-Shop配置中是有效的。该算法能够为具有运输约束的柔性车间调度问题找到迄今为止最好的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimización del makespan en el problema de Job Shop Flexible con restricciones de transporte usando Algoritmos Genéticos
We solved the Flexible Job Shop Scheduling Problem (FJSSP) with transportation constraints in order to minimize the makespan by sequencing and assigning machines. A bibliographic review was made in order to guide the methodology to be used. From there, we approached the problem with a genetic algorithm. We validated its eff ectiveness by comparing the results obtained with different instances proposed in the literature. The results obtained show that the proposed genetic algorithm is efficient in the different classic Job Shop configurations tested. The algorithm is able to find very approximate solutions to the best found to date for the Flexible Job Shop Scheduling Problem with transportation constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ENTRE CIENCIA E INGENIERIA
ENTRE CIENCIA E INGENIERIA ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信