Lars Nauheimer, Lujing Cui, C. Clarke, D. Crayn, G. Bourke, Katharina Nargar
{"title":"基因组掠过提供了清晰的质体和核系统发育,显示了热带食肉植物猪笼草属(石竹目)的深层网状进化模式","authors":"Lars Nauheimer, Lujing Cui, C. Clarke, D. Crayn, G. Bourke, Katharina Nargar","doi":"10.1071/SB18057","DOIUrl":null,"url":null,"abstract":"\nNepenthes is a genus of carnivorous plants consisting of ~160 species that are distributed in the paleotropics. Molecular systematics has so far not been able to resolve evolutionary relationships of most species because of the limited genetic divergence in previous studies. In the present study, we used a genome-skimming approach to infer phylogenetic relationships on the basis of 81 plastid genes and the highly repetitive rRNA (external transcribed spacer (ETS)–26S) for 39 accessions representing 34 species from eight sections. Maximum-likelihood analysis and Bayesian inference were performed separately for the nuclear and the plastid datasets. Divergence-time estimations were conducted on the basis of a relaxed molecular-clock model, using secondary calibration points. The phylogenetic analyses of the nuclear and plastid datasets yielded well resolved and supported phylogenies. Incongruences between the two datasets were detected, suggesting multiple hybridisation events or incomplete lineage sorting in the deeper and more recent evolutionary history of the genus. The inclusion of several known and suspected hybrids in the phylogenetic analysis provided insights into their parentage. Divergence-time estimations placed the crown diversification of Nepenthes in the early Miocene, c. 20 million years ago. This study showed that genome skimming provides well resolved nuclear and plastid phylogenies that provide valuable insights into the complex evolutionary relationships of Nepenthes.\n","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/SB18057","citationCount":"15","resultStr":"{\"title\":\"Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales)\",\"authors\":\"Lars Nauheimer, Lujing Cui, C. Clarke, D. Crayn, G. Bourke, Katharina Nargar\",\"doi\":\"10.1071/SB18057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nNepenthes is a genus of carnivorous plants consisting of ~160 species that are distributed in the paleotropics. Molecular systematics has so far not been able to resolve evolutionary relationships of most species because of the limited genetic divergence in previous studies. In the present study, we used a genome-skimming approach to infer phylogenetic relationships on the basis of 81 plastid genes and the highly repetitive rRNA (external transcribed spacer (ETS)–26S) for 39 accessions representing 34 species from eight sections. Maximum-likelihood analysis and Bayesian inference were performed separately for the nuclear and the plastid datasets. Divergence-time estimations were conducted on the basis of a relaxed molecular-clock model, using secondary calibration points. The phylogenetic analyses of the nuclear and plastid datasets yielded well resolved and supported phylogenies. Incongruences between the two datasets were detected, suggesting multiple hybridisation events or incomplete lineage sorting in the deeper and more recent evolutionary history of the genus. The inclusion of several known and suspected hybrids in the phylogenetic analysis provided insights into their parentage. Divergence-time estimations placed the crown diversification of Nepenthes in the early Miocene, c. 20 million years ago. This study showed that genome skimming provides well resolved nuclear and plastid phylogenies that provide valuable insights into the complex evolutionary relationships of Nepenthes.\\n\",\"PeriodicalId\":55416,\"journal\":{\"name\":\"Australian Systematic Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1071/SB18057\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Systematic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/SB18057\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Systematic Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/SB18057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales)
Nepenthes is a genus of carnivorous plants consisting of ~160 species that are distributed in the paleotropics. Molecular systematics has so far not been able to resolve evolutionary relationships of most species because of the limited genetic divergence in previous studies. In the present study, we used a genome-skimming approach to infer phylogenetic relationships on the basis of 81 plastid genes and the highly repetitive rRNA (external transcribed spacer (ETS)–26S) for 39 accessions representing 34 species from eight sections. Maximum-likelihood analysis and Bayesian inference were performed separately for the nuclear and the plastid datasets. Divergence-time estimations were conducted on the basis of a relaxed molecular-clock model, using secondary calibration points. The phylogenetic analyses of the nuclear and plastid datasets yielded well resolved and supported phylogenies. Incongruences between the two datasets were detected, suggesting multiple hybridisation events or incomplete lineage sorting in the deeper and more recent evolutionary history of the genus. The inclusion of several known and suspected hybrids in the phylogenetic analysis provided insights into their parentage. Divergence-time estimations placed the crown diversification of Nepenthes in the early Miocene, c. 20 million years ago. This study showed that genome skimming provides well resolved nuclear and plastid phylogenies that provide valuable insights into the complex evolutionary relationships of Nepenthes.
期刊介绍:
Australian Systematic Botany is an international journal devoted to the systematics, taxonomy, and related aspects of biogeography and evolution of all algae, fungi and plants, including fossils. Descriptive taxonomic papers should normally constitute a comprehensive treatment of a group. Short papers on individual species and nomenclatural papers must contain significant new information of broader interest to be considered. The prestigious L.A.S. Johnson Review Series is published. Other review articles will also be considered. All papers are peer reviewed.
Australian Systematic Botany is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.