强极小Steiner系统II:配位与拟群

IF 0.6 4区 数学 Q3 MATHEMATICS
John T. Baldwin
{"title":"强极小Steiner系统II:配位与拟群","authors":"John T. Baldwin","doi":"10.1007/s00012-023-00812-w","DOIUrl":null,"url":null,"abstract":"<div><p>Each strongly minimal Steiner <i>k</i>-system (<i>M</i>, <i>R</i>) (where is <i>R</i> is a ternary collinearity relation) can be ‘coordinatized’ in the sense of (Ganter–Werner 1975) by a quasigroup if <i>k</i> is a prime-power. We show this coordinatization is never definable in (<i>M</i>, <i>R</i>) and the strongly minimal Steiner <i>k</i>-systems constructed in (Baldwin–Paolini 2020) never interpret a quasigroup. Nevertheless, by refining the construction, if <i>k</i> is a prime power, in each (2, <i>k</i>)-variety of quasigroups (Definition 3.10) there is a strongly minimal quasigroup that interprets a Steiner <i>k</i>-system.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strongly minimal Steiner systems II: coordinatization and quasigroups\",\"authors\":\"John T. Baldwin\",\"doi\":\"10.1007/s00012-023-00812-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Each strongly minimal Steiner <i>k</i>-system (<i>M</i>, <i>R</i>) (where is <i>R</i> is a ternary collinearity relation) can be ‘coordinatized’ in the sense of (Ganter–Werner 1975) by a quasigroup if <i>k</i> is a prime-power. We show this coordinatization is never definable in (<i>M</i>, <i>R</i>) and the strongly minimal Steiner <i>k</i>-systems constructed in (Baldwin–Paolini 2020) never interpret a quasigroup. Nevertheless, by refining the construction, if <i>k</i> is a prime power, in each (2, <i>k</i>)-variety of quasigroups (Definition 3.10) there is a strongly minimal quasigroup that interprets a Steiner <i>k</i>-system.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00812-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00812-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果k是素数幂,则每个强极小Steiner k-系统(M,R)(其中R是三元共线关系)可以在(Ganter–Werner 1975)意义上由拟群“配位”。我们证明了这种配位在(M,R)中是不可定义的,并且在(Baldwin–Paolini 2020)中构造的强极小Steiner k-系统从未解释拟群。然而,通过改进构造,如果k是素数幂,则在每个(2,k)-类拟群(定义3.10)中,都存在一个强极小拟群,它解释Steiner k系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly minimal Steiner systems II: coordinatization and quasigroups

Each strongly minimal Steiner k-system (MR) (where is R is a ternary collinearity relation) can be ‘coordinatized’ in the sense of (Ganter–Werner 1975) by a quasigroup if k is a prime-power. We show this coordinatization is never definable in (MR) and the strongly minimal Steiner k-systems constructed in (Baldwin–Paolini 2020) never interpret a quasigroup. Nevertheless, by refining the construction, if k is a prime power, in each (2, k)-variety of quasigroups (Definition 3.10) there is a strongly minimal quasigroup that interprets a Steiner k-system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信