纤维增强聚乙烯醇水凝胶的原位纤维形成

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0056
Zheng Guo, Zebo Wang, Wei-Ying Pan, Jintao Zhang, Yu Qi, Yajie Qin, Yi Zhang
{"title":"纤维增强聚乙烯醇水凝胶的原位纤维形成","authors":"Zheng Guo, Zebo Wang, Wei-Ying Pan, Jintao Zhang, Yu Qi, Yajie Qin, Yi Zhang","doi":"10.1515/epoly-2023-0056","DOIUrl":null,"url":null,"abstract":"Abstract Polyvinyl alcohol (PVA) hydrogels have been extensively investigated for drug release, artificial cartilage, biosensing, and other applications owing to their good chemical stability, biocompatibility, high water absorption, and ease of processing. However, the conventional hydrogel preparation method is complex and energy-intensive, and the mechanical performance of the pure PVA hydrogel is poor, which severely limits its application in related fields. In this study, a PVA hydrogel was functionally modified using polybutylene succinate (PBS) nanofibers prepared using in situ fiber-forming technology to fabricate a PBS-enhanced PVA composite hydrogel. The strength of the PBS/PVA hydrogel fabricated in this study is 3.88 MPa, which is 4.94 times that of the pure PVA hydrogel; thus, the strength of the hydrogel was effectively improved. The hydrogel preparation method used in this study is novel and straightforward. Moreover, the resulting materials are biodegradable and non-toxic. Compared to conventional methods, this method has the advantages of conserving resources and being environmentally friendly.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber-reinforced polyvinyl alcohol hydrogel via in situ fiber formation\",\"authors\":\"Zheng Guo, Zebo Wang, Wei-Ying Pan, Jintao Zhang, Yu Qi, Yajie Qin, Yi Zhang\",\"doi\":\"10.1515/epoly-2023-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polyvinyl alcohol (PVA) hydrogels have been extensively investigated for drug release, artificial cartilage, biosensing, and other applications owing to their good chemical stability, biocompatibility, high water absorption, and ease of processing. However, the conventional hydrogel preparation method is complex and energy-intensive, and the mechanical performance of the pure PVA hydrogel is poor, which severely limits its application in related fields. In this study, a PVA hydrogel was functionally modified using polybutylene succinate (PBS) nanofibers prepared using in situ fiber-forming technology to fabricate a PBS-enhanced PVA composite hydrogel. The strength of the PBS/PVA hydrogel fabricated in this study is 3.88 MPa, which is 4.94 times that of the pure PVA hydrogel; thus, the strength of the hydrogel was effectively improved. The hydrogel preparation method used in this study is novel and straightforward. Moreover, the resulting materials are biodegradable and non-toxic. Compared to conventional methods, this method has the advantages of conserving resources and being environmentally friendly.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0056\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0056","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚乙烯醇(PVA)水凝胶具有良好的化学稳定性、生物相容性、高吸水性和易于加工等优点,在药物释放、人工软骨、生物传感等方面得到了广泛的应用。但传统的水凝胶制备方法复杂、耗能大,且纯PVA水凝胶力学性能较差,严重限制了其在相关领域的应用。在本研究中,利用原位纤维成型技术制备的聚丁二酸丁二酸(PBS)纳米纤维对PVA水凝胶进行功能改性,制备了PBS增强的PVA复合水凝胶。本研究制备的PBS/PVA水凝胶强度为3.88 MPa,是纯PVA水凝胶的4.94倍;从而有效地提高了水凝胶的强度。本研究采用的水凝胶制备方法新颖、简单。此外,所得到的材料是可生物降解和无毒的。与传统方法相比,该方法具有节约资源和环境友好的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiber-reinforced polyvinyl alcohol hydrogel via in situ fiber formation
Abstract Polyvinyl alcohol (PVA) hydrogels have been extensively investigated for drug release, artificial cartilage, biosensing, and other applications owing to their good chemical stability, biocompatibility, high water absorption, and ease of processing. However, the conventional hydrogel preparation method is complex and energy-intensive, and the mechanical performance of the pure PVA hydrogel is poor, which severely limits its application in related fields. In this study, a PVA hydrogel was functionally modified using polybutylene succinate (PBS) nanofibers prepared using in situ fiber-forming technology to fabricate a PBS-enhanced PVA composite hydrogel. The strength of the PBS/PVA hydrogel fabricated in this study is 3.88 MPa, which is 4.94 times that of the pure PVA hydrogel; thus, the strength of the hydrogel was effectively improved. The hydrogel preparation method used in this study is novel and straightforward. Moreover, the resulting materials are biodegradable and non-toxic. Compared to conventional methods, this method has the advantages of conserving resources and being environmentally friendly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信