Zhongyu Zhang, Meng Chen, M. Tong, Wan Sun, P. Dong, Xinfeng Song, Xiaoyue Wang
{"title":"2-氯-5-硝基苯甲酸及杂环化合物三元金属配合物的合成、晶体结构、热行为及抗肿瘤活性","authors":"Zhongyu Zhang, Meng Chen, M. Tong, Wan Sun, P. Dong, Xinfeng Song, Xiaoyue Wang","doi":"10.1515/hc-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract Three complexes, namely complex (1), complex (2), and complex (3), were synthesized and characterized by X-ray diffraction, thermogravimetric study, and elemental study. Complex (1) comprises discrete binuclear clusters, where two oxygen atoms of 2-chloro-5-nitrobenzoic acid bridge the two copper atoms. Complex (2) is a six-coordination structure consisting of four nitrogen atoms and two oxygen atoms in 2-chloro-5-nitrobenzoic acid and 1,10-phenanthroline to furnish a twisted octahedron. Complex (3) is a six-coordination structure consisting of four oxygen atoms and two nitrogen atoms from the 2-chloro-5-nitrobenzoic acid, methanol, and 2,2′-dipyridyl to furnish a distorted octahedral geometry. Metal complexes’ anti-tumor activity was also investigated by the MTT assay. Of the complexes tested, complex (1) could induce apoptosis in these A549 lung cancer and Caco-2 colon adenocarcinoma cells and complex (2) could induce apoptosis in Caco-2 colon adenocarcinoma cells. CCDC for complex (1) was 1543354, CCDC for complex (2) was 1546991, and CCDC for complex (3) was 1543417.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"28 1","pages":"84 - 94"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Syntheses, crystal structure, thermal behavior, and anti-tumor activity of three ternary metal complexes with 2-chloro-5-nitrobenzoic acid and heterocyclic compounds\",\"authors\":\"Zhongyu Zhang, Meng Chen, M. Tong, Wan Sun, P. Dong, Xinfeng Song, Xiaoyue Wang\",\"doi\":\"10.1515/hc-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Three complexes, namely complex (1), complex (2), and complex (3), were synthesized and characterized by X-ray diffraction, thermogravimetric study, and elemental study. Complex (1) comprises discrete binuclear clusters, where two oxygen atoms of 2-chloro-5-nitrobenzoic acid bridge the two copper atoms. Complex (2) is a six-coordination structure consisting of four nitrogen atoms and two oxygen atoms in 2-chloro-5-nitrobenzoic acid and 1,10-phenanthroline to furnish a twisted octahedron. Complex (3) is a six-coordination structure consisting of four oxygen atoms and two nitrogen atoms from the 2-chloro-5-nitrobenzoic acid, methanol, and 2,2′-dipyridyl to furnish a distorted octahedral geometry. Metal complexes’ anti-tumor activity was also investigated by the MTT assay. Of the complexes tested, complex (1) could induce apoptosis in these A549 lung cancer and Caco-2 colon adenocarcinoma cells and complex (2) could induce apoptosis in Caco-2 colon adenocarcinoma cells. CCDC for complex (1) was 1543354, CCDC for complex (2) was 1546991, and CCDC for complex (3) was 1543417.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"28 1\",\"pages\":\"84 - 94\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2022-0011\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2022-0011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Syntheses, crystal structure, thermal behavior, and anti-tumor activity of three ternary metal complexes with 2-chloro-5-nitrobenzoic acid and heterocyclic compounds
Abstract Three complexes, namely complex (1), complex (2), and complex (3), were synthesized and characterized by X-ray diffraction, thermogravimetric study, and elemental study. Complex (1) comprises discrete binuclear clusters, where two oxygen atoms of 2-chloro-5-nitrobenzoic acid bridge the two copper atoms. Complex (2) is a six-coordination structure consisting of four nitrogen atoms and two oxygen atoms in 2-chloro-5-nitrobenzoic acid and 1,10-phenanthroline to furnish a twisted octahedron. Complex (3) is a six-coordination structure consisting of four oxygen atoms and two nitrogen atoms from the 2-chloro-5-nitrobenzoic acid, methanol, and 2,2′-dipyridyl to furnish a distorted octahedral geometry. Metal complexes’ anti-tumor activity was also investigated by the MTT assay. Of the complexes tested, complex (1) could induce apoptosis in these A549 lung cancer and Caco-2 colon adenocarcinoma cells and complex (2) could induce apoptosis in Caco-2 colon adenocarcinoma cells. CCDC for complex (1) was 1543354, CCDC for complex (2) was 1546991, and CCDC for complex (3) was 1543417.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.