Vilmantas Pupkis, Rokas Buisas, Indre Lapeikaite, Vilma Kisnieriene
{"title":"利用钝棘藜植物细胞进行生物体育教学","authors":"Vilmantas Pupkis, Rokas Buisas, Indre Lapeikaite, Vilma Kisnieriene","doi":"10.35459/TBP.2019.000130","DOIUrl":null,"url":null,"abstract":"\n Using giant characeaen algae Nitellopsis obtusa in laboratory exercises is proposed to familiarize students with basic concepts of electrophysiology and provide some simple hands-on practice. The described concept experiments present extracellular registration of action potentials (APs) and investigation of cytoplasmic streaming properties. Students are expected to register the propagation velocity of APs (found to be 3.4 ± 1.5 cm/s in N. obtusa), as well as the velocity of cytoplasmic streaming (66.7 ± 9 μm/s). Proposed exercises also concern recovery dynamics of cytoplasmic streaming after a stimulation (recovery time constant τ = 3.7 ± 2.1 min) as well as investigation of an effect of various chemicals (e.g., KCl) on all selected parameters. The experiments endorse characeaen algae as a model system to be routinely explored in education of biophysics and bioelectrical phenomena of the cell.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Plant Cells of Nitellopsis obtusa for Biophysical Education\",\"authors\":\"Vilmantas Pupkis, Rokas Buisas, Indre Lapeikaite, Vilma Kisnieriene\",\"doi\":\"10.35459/TBP.2019.000130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Using giant characeaen algae Nitellopsis obtusa in laboratory exercises is proposed to familiarize students with basic concepts of electrophysiology and provide some simple hands-on practice. The described concept experiments present extracellular registration of action potentials (APs) and investigation of cytoplasmic streaming properties. Students are expected to register the propagation velocity of APs (found to be 3.4 ± 1.5 cm/s in N. obtusa), as well as the velocity of cytoplasmic streaming (66.7 ± 9 μm/s). Proposed exercises also concern recovery dynamics of cytoplasmic streaming after a stimulation (recovery time constant τ = 3.7 ± 2.1 min) as well as investigation of an effect of various chemicals (e.g., KCl) on all selected parameters. The experiments endorse characeaen algae as a model system to be routinely explored in education of biophysics and bioelectrical phenomena of the cell.\",\"PeriodicalId\":72403,\"journal\":{\"name\":\"Biophysicist (Rockville, Md.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysicist (Rockville, Md.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35459/TBP.2019.000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35459/TBP.2019.000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Plant Cells of Nitellopsis obtusa for Biophysical Education
Using giant characeaen algae Nitellopsis obtusa in laboratory exercises is proposed to familiarize students with basic concepts of electrophysiology and provide some simple hands-on practice. The described concept experiments present extracellular registration of action potentials (APs) and investigation of cytoplasmic streaming properties. Students are expected to register the propagation velocity of APs (found to be 3.4 ± 1.5 cm/s in N. obtusa), as well as the velocity of cytoplasmic streaming (66.7 ± 9 μm/s). Proposed exercises also concern recovery dynamics of cytoplasmic streaming after a stimulation (recovery time constant τ = 3.7 ± 2.1 min) as well as investigation of an effect of various chemicals (e.g., KCl) on all selected parameters. The experiments endorse characeaen algae as a model system to be routinely explored in education of biophysics and bioelectrical phenomena of the cell.