{"title":"Ka波段LEO移动卫星自适应编码调制选择优化方案","authors":"Hongrong Shen, Qian Ning, Bingcai Chen","doi":"10.1002/sat.1475","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To address the problem that Ka-band satellite communication signal transmission is easily affected by rainfall and terminal environment, combining the characteristics of high-speed movement of LEO satellites and the wave propagation characteristics of satellite-ground links, this paper establishes a Markov synthesis model of four-state satellite channels based on Ka-band that integrates rainfall attenuation and terminal shadow attenuation, and a scheme for adaptive coding and modulation selection based on the DVB-S2 standard is proposed. Based on this, a rainfall fading probability density function (PDF) based on the satellite elevation angle variation is derived, and a more efficient and streamlined set of modulation and coding(MODCOD) is obtained through simulations and calculations. The simulation results show that the proposed scheme not only effectively solves the problem of severe fading of the transmission signal due to rainfall, ground movement environment and satellite mobility but also significantly reduces the system complexity of the original DVB-S2 standard scheme with little loss of efficiency.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 4","pages":"406-425"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive coding modulation selection optimisation scheme for Ka-band LEO mobile satellites\",\"authors\":\"Hongrong Shen, Qian Ning, Bingcai Chen\",\"doi\":\"10.1002/sat.1475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>To address the problem that Ka-band satellite communication signal transmission is easily affected by rainfall and terminal environment, combining the characteristics of high-speed movement of LEO satellites and the wave propagation characteristics of satellite-ground links, this paper establishes a Markov synthesis model of four-state satellite channels based on Ka-band that integrates rainfall attenuation and terminal shadow attenuation, and a scheme for adaptive coding and modulation selection based on the DVB-S2 standard is proposed. Based on this, a rainfall fading probability density function (PDF) based on the satellite elevation angle variation is derived, and a more efficient and streamlined set of modulation and coding(MODCOD) is obtained through simulations and calculations. The simulation results show that the proposed scheme not only effectively solves the problem of severe fading of the transmission signal due to rainfall, ground movement environment and satellite mobility but also significantly reduces the system complexity of the original DVB-S2 standard scheme with little loss of efficiency.</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"41 4\",\"pages\":\"406-425\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1475\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1475","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Adaptive coding modulation selection optimisation scheme for Ka-band LEO mobile satellites
To address the problem that Ka-band satellite communication signal transmission is easily affected by rainfall and terminal environment, combining the characteristics of high-speed movement of LEO satellites and the wave propagation characteristics of satellite-ground links, this paper establishes a Markov synthesis model of four-state satellite channels based on Ka-band that integrates rainfall attenuation and terminal shadow attenuation, and a scheme for adaptive coding and modulation selection based on the DVB-S2 standard is proposed. Based on this, a rainfall fading probability density function (PDF) based on the satellite elevation angle variation is derived, and a more efficient and streamlined set of modulation and coding(MODCOD) is obtained through simulations and calculations. The simulation results show that the proposed scheme not only effectively solves the problem of severe fading of the transmission signal due to rainfall, ground movement environment and satellite mobility but also significantly reduces the system complexity of the original DVB-S2 standard scheme with little loss of efficiency.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols