{"title":"从轮胎动力学测量中消除杂散力或小心回道","authors":"G. R. Potts","doi":"10.2346/tire.21.20027","DOIUrl":null,"url":null,"abstract":"\n The forces that enter the mounted tire spindle of laboratory-type tire dynamics test machines include the following items: (1) direct tire-generated forces, tire nonuniformities, and tread pattern vibrations; (2) direct tire-transmitted rough road surface or cleat impact forces; (3) direct machine resonance-amplified versions of items 1 and 2; (4) machine frame backpath-transmitted versions of items 1–3; (5) dynamic loadcell crosstalk; (6) external noise from foundation vibrations; and (7) adjacent load station vibrations traveling through the machine frame. Although items 1 and 2 are sought in spindle vibration measurements, items 3–7 are also included in the mix and confound the measurement, confusing the analyst into thinking that machine properties are tire properties. Not only do items 3–6 not exist in vehicle operation but also comparison of results from one test machine to another can be an exercise in comparing machine to machine, not tire to tire. Tire dynamics measurements should simulate tires in roadway operation, not create a whole new set of problems that do not exist in vehicles. Elimination of item 7 paved the way to developing a tire failure warning system that operates on tire endurance test machines and can be adapted for operation on passenger vehicles to warn the driver of tire trouble. This article develops the theory of stray force measurement, describes a method for eliminating stray forces from experimental tire dynamics data, and provides experimental verification of the effectiveness of these methods.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination of Stray Forces from Tire Dynamics Measurements or Beware the Backpath\",\"authors\":\"G. R. Potts\",\"doi\":\"10.2346/tire.21.20027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The forces that enter the mounted tire spindle of laboratory-type tire dynamics test machines include the following items: (1) direct tire-generated forces, tire nonuniformities, and tread pattern vibrations; (2) direct tire-transmitted rough road surface or cleat impact forces; (3) direct machine resonance-amplified versions of items 1 and 2; (4) machine frame backpath-transmitted versions of items 1–3; (5) dynamic loadcell crosstalk; (6) external noise from foundation vibrations; and (7) adjacent load station vibrations traveling through the machine frame. Although items 1 and 2 are sought in spindle vibration measurements, items 3–7 are also included in the mix and confound the measurement, confusing the analyst into thinking that machine properties are tire properties. Not only do items 3–6 not exist in vehicle operation but also comparison of results from one test machine to another can be an exercise in comparing machine to machine, not tire to tire. Tire dynamics measurements should simulate tires in roadway operation, not create a whole new set of problems that do not exist in vehicles. Elimination of item 7 paved the way to developing a tire failure warning system that operates on tire endurance test machines and can be adapted for operation on passenger vehicles to warn the driver of tire trouble. This article develops the theory of stray force measurement, describes a method for eliminating stray forces from experimental tire dynamics data, and provides experimental verification of the effectiveness of these methods.\",\"PeriodicalId\":44601,\"journal\":{\"name\":\"Tire Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tire Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2346/tire.21.20027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.21.20027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Elimination of Stray Forces from Tire Dynamics Measurements or Beware the Backpath
The forces that enter the mounted tire spindle of laboratory-type tire dynamics test machines include the following items: (1) direct tire-generated forces, tire nonuniformities, and tread pattern vibrations; (2) direct tire-transmitted rough road surface or cleat impact forces; (3) direct machine resonance-amplified versions of items 1 and 2; (4) machine frame backpath-transmitted versions of items 1–3; (5) dynamic loadcell crosstalk; (6) external noise from foundation vibrations; and (7) adjacent load station vibrations traveling through the machine frame. Although items 1 and 2 are sought in spindle vibration measurements, items 3–7 are also included in the mix and confound the measurement, confusing the analyst into thinking that machine properties are tire properties. Not only do items 3–6 not exist in vehicle operation but also comparison of results from one test machine to another can be an exercise in comparing machine to machine, not tire to tire. Tire dynamics measurements should simulate tires in roadway operation, not create a whole new set of problems that do not exist in vehicles. Elimination of item 7 paved the way to developing a tire failure warning system that operates on tire endurance test machines and can be adapted for operation on passenger vehicles to warn the driver of tire trouble. This article develops the theory of stray force measurement, describes a method for eliminating stray forces from experimental tire dynamics data, and provides experimental verification of the effectiveness of these methods.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.