{"title":"基于深度学习技术的可移动遗产数字化多类语义分割","authors":"G. Patrucco, F. Setragno","doi":"10.4995/VAR.2021.15329","DOIUrl":null,"url":null,"abstract":"Digitisation processes of movable heritage are becoming increasingly popular to document the artworks stored in our museums. A growing number of strategies for the three-dimensional (3D) acquisition and modelling of these invaluable assets have been developed in the last few years. Their objective is to efficiently respond to this documentation need and contribute to deepening the knowledge of the masterpieces investigated constantly by researchers operating in many fieldworks. Nowadays, one of the most effective solutions is represented by the development of image-based techniques, usually connected to a Structure-from-Motion (SfM) photogrammetric approach. However, while images acquisition is relatively rapid, the processes connected to data processing are very time-consuming and require the operator’s substantial manual involvement. Developing deep learning-based strategies can be an effective solution to enhance the automatism level. In this research, which has been carried out in the framework of the digitisation of a wooden maquettes collection stored in the ‘Museo Egizio di Torino’, using a photogrammetric approach, an automatic masking strategy using deep learning techniques is proposed, to increase the level of automatism and therefore, optimise the photogrammetric pipeline. Starting from a manually annotated dataset, a neural network was trained to automatically perform a semantic classification to isolate the maquettes from the background. The proposed methodology allowed the researchers to obtain automatically segmented masks with a high degree of accuracy. The workflow is described (as regards acquisition strategies, dataset processing, and neural network training). In addition, the accuracy of the results is evaluated and discussed. Finally, the researchers proposed the possibility of performing a multiclass segmentation on the digital images to recognise different object categories in the images, as well as to define a semantic hierarchy to perform automatic classification of different elements in the acquired images.Highlights:In the framework of movable heritage digitisation processes, many procedures are very time-consuming, and they still require the operator’s substantial manual involvement.This research proposes using deep learning techniques to enhance the automatism level in the generation of exclusion masks, improving the optimisation of the photogrammetric procedures.Following this strategy, the possibility of performing a multiclass semantic segmentation (on the 2D images and, consequently, on the 3D point cloud) is also discussed, considering the accuracy of the obtainable results.","PeriodicalId":44206,"journal":{"name":"Virtual Archaeology Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques\",\"authors\":\"G. Patrucco, F. Setragno\",\"doi\":\"10.4995/VAR.2021.15329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digitisation processes of movable heritage are becoming increasingly popular to document the artworks stored in our museums. A growing number of strategies for the three-dimensional (3D) acquisition and modelling of these invaluable assets have been developed in the last few years. Their objective is to efficiently respond to this documentation need and contribute to deepening the knowledge of the masterpieces investigated constantly by researchers operating in many fieldworks. Nowadays, one of the most effective solutions is represented by the development of image-based techniques, usually connected to a Structure-from-Motion (SfM) photogrammetric approach. However, while images acquisition is relatively rapid, the processes connected to data processing are very time-consuming and require the operator’s substantial manual involvement. Developing deep learning-based strategies can be an effective solution to enhance the automatism level. In this research, which has been carried out in the framework of the digitisation of a wooden maquettes collection stored in the ‘Museo Egizio di Torino’, using a photogrammetric approach, an automatic masking strategy using deep learning techniques is proposed, to increase the level of automatism and therefore, optimise the photogrammetric pipeline. Starting from a manually annotated dataset, a neural network was trained to automatically perform a semantic classification to isolate the maquettes from the background. The proposed methodology allowed the researchers to obtain automatically segmented masks with a high degree of accuracy. The workflow is described (as regards acquisition strategies, dataset processing, and neural network training). In addition, the accuracy of the results is evaluated and discussed. Finally, the researchers proposed the possibility of performing a multiclass segmentation on the digital images to recognise different object categories in the images, as well as to define a semantic hierarchy to perform automatic classification of different elements in the acquired images.Highlights:In the framework of movable heritage digitisation processes, many procedures are very time-consuming, and they still require the operator’s substantial manual involvement.This research proposes using deep learning techniques to enhance the automatism level in the generation of exclusion masks, improving the optimisation of the photogrammetric procedures.Following this strategy, the possibility of performing a multiclass semantic segmentation (on the 2D images and, consequently, on the 3D point cloud) is also discussed, considering the accuracy of the obtainable results.\",\"PeriodicalId\":44206,\"journal\":{\"name\":\"Virtual Archaeology Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Archaeology Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/VAR.2021.15329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Archaeology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/VAR.2021.15329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques
Digitisation processes of movable heritage are becoming increasingly popular to document the artworks stored in our museums. A growing number of strategies for the three-dimensional (3D) acquisition and modelling of these invaluable assets have been developed in the last few years. Their objective is to efficiently respond to this documentation need and contribute to deepening the knowledge of the masterpieces investigated constantly by researchers operating in many fieldworks. Nowadays, one of the most effective solutions is represented by the development of image-based techniques, usually connected to a Structure-from-Motion (SfM) photogrammetric approach. However, while images acquisition is relatively rapid, the processes connected to data processing are very time-consuming and require the operator’s substantial manual involvement. Developing deep learning-based strategies can be an effective solution to enhance the automatism level. In this research, which has been carried out in the framework of the digitisation of a wooden maquettes collection stored in the ‘Museo Egizio di Torino’, using a photogrammetric approach, an automatic masking strategy using deep learning techniques is proposed, to increase the level of automatism and therefore, optimise the photogrammetric pipeline. Starting from a manually annotated dataset, a neural network was trained to automatically perform a semantic classification to isolate the maquettes from the background. The proposed methodology allowed the researchers to obtain automatically segmented masks with a high degree of accuracy. The workflow is described (as regards acquisition strategies, dataset processing, and neural network training). In addition, the accuracy of the results is evaluated and discussed. Finally, the researchers proposed the possibility of performing a multiclass segmentation on the digital images to recognise different object categories in the images, as well as to define a semantic hierarchy to perform automatic classification of different elements in the acquired images.Highlights:In the framework of movable heritage digitisation processes, many procedures are very time-consuming, and they still require the operator’s substantial manual involvement.This research proposes using deep learning techniques to enhance the automatism level in the generation of exclusion masks, improving the optimisation of the photogrammetric procedures.Following this strategy, the possibility of performing a multiclass semantic segmentation (on the 2D images and, consequently, on the 3D point cloud) is also discussed, considering the accuracy of the obtainable results.
期刊介绍:
Virtual Archaeology Review (VAR) aims the publication of original papers, interdisciplinary reviews and essays on the new discipline of virtual archaeology, which is continuously evolving and currently on its way to achieve scientific consolidation. In fact, Virtual Archaeology deals with the digital representation of historical heritage objects, buildings and landscapes through 3D acquisition, digital recording and interactive and immersive tools for analysis, interpretation, dissemination and communication purposes by means of multidimensional geometric properties and visual computational modelling. VAR will publish full-length original papers which reflect both current research and practice throughout the world, in order to contribute to the advancement of the new field of virtual archaeology, ranging from new ways of digital recording and documentation, advanced reconstruction and 3D modelling up to cyber-archaeology, virtual exhibitions and serious gaming. Thus acceptable material may emerge from interesting applications as well as from original developments or research. OBJECTIVES: - OFFER researchers working in the field of virtual archaeology and cultural heritage an appropriate editorial frame to publish state-of-the-art research works, as well as theoretical and methodological contributions. - GATHER virtual archaeology progresses achieved as a new international scientific discipline. - ENCOURAGE the publication of the latest, state-of-the-art, significant research and meaningful applications in the field of virtual archaeology. - ENHANCE international connections in the field of virtual archaeology and cultural heritage.