热暗物质的解析流体近似

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jorge Mastache , Axel de la Macorra
{"title":"热暗物质的解析流体近似","authors":"Jorge Mastache ,&nbsp;Axel de la Macorra","doi":"10.1016/j.astropartphys.2023.102818","DOIUrl":null,"url":null,"abstract":"<div><p><span>We present the cosmological evolution<span> of the velocity of a massive particle, along with its equation of state. Both quantities are expressed in terms of </span></span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span><span>, the moment when a massive particle becomes nonrelativistic. The expressions for the energy density and pressure for the background evolution are also in terms of </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span><span>; therefore, the perturbation equations for any massively decoupled particle, i.e., warm dark matter (WDM) or neutrinos, can be computed in the fluid approximation. A relation between the mass of the WDM particle, </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>wdm</mi></mrow></msub></math></span>, with the moment of the nonrelativistic transition, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span>, and the temperature ratio with the neutrinos, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>wdm</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ν</mi></mrow></msub></mrow></math></span>, are obtained and compared to results from Boltzmann solvers as CLASS with a non-cold relic as WDM. We found that using the analytic fluid approximation, the value of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span> is 2.1% different on average in a wide range of WDM masses, and the temperature ratio is 7.1% lower than previous parametrizations. A smooth velocity dispersion for the WDM allows us to compute the cut-off scale in structure formation due to the free-streaming (<span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi><mi>s</mi></mrow></msub></math></span><span>), which is a feature for a WDM particle to explain the satellite problem. The cut-off in the matter power spectrum and halo mass function using the analytic fluid approximation is similar to the Boltzmann solvers with a non-cold relic and the transfer function from numerical simulations. This approach provides a more detailed description and a deeper understanding of the WDM cosmological evolution by understanding the velocity dispersion of a WDM particle. Comprehensive numerical modeling can incorporate the analytical fluid formulation, potentially improving calculation performance, for instance, running MCMC for a </span><span><math><mi>Λ</mi></math></span><span>WDM scenario using CMB Planck and WiggleZ data, we obtained a lower bound for the WDM mass </span><span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>wdm</mi></mrow></msub><mo>&gt;</mo><mn>70</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>eV</mi></mrow></math></span> at <span><math><mrow><mn>1</mn><mi>σ</mi></mrow></math></span> confidence. Still, more data at small scales or a combination with other observations are needed to constrain the mass value of the WDM particle.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"148 ","pages":"Article 102818"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analytic fluid approximation for warm dark matter\",\"authors\":\"Jorge Mastache ,&nbsp;Axel de la Macorra\",\"doi\":\"10.1016/j.astropartphys.2023.102818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We present the cosmological evolution<span> of the velocity of a massive particle, along with its equation of state. Both quantities are expressed in terms of </span></span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span><span>, the moment when a massive particle becomes nonrelativistic. The expressions for the energy density and pressure for the background evolution are also in terms of </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span><span>; therefore, the perturbation equations for any massively decoupled particle, i.e., warm dark matter (WDM) or neutrinos, can be computed in the fluid approximation. A relation between the mass of the WDM particle, </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>wdm</mi></mrow></msub></math></span>, with the moment of the nonrelativistic transition, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span>, and the temperature ratio with the neutrinos, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>wdm</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>ν</mi></mrow></msub></mrow></math></span>, are obtained and compared to results from Boltzmann solvers as CLASS with a non-cold relic as WDM. We found that using the analytic fluid approximation, the value of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mi>r</mi></mrow></msub></math></span> is 2.1% different on average in a wide range of WDM masses, and the temperature ratio is 7.1% lower than previous parametrizations. A smooth velocity dispersion for the WDM allows us to compute the cut-off scale in structure formation due to the free-streaming (<span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi><mi>s</mi></mrow></msub></math></span><span>), which is a feature for a WDM particle to explain the satellite problem. The cut-off in the matter power spectrum and halo mass function using the analytic fluid approximation is similar to the Boltzmann solvers with a non-cold relic and the transfer function from numerical simulations. This approach provides a more detailed description and a deeper understanding of the WDM cosmological evolution by understanding the velocity dispersion of a WDM particle. Comprehensive numerical modeling can incorporate the analytical fluid formulation, potentially improving calculation performance, for instance, running MCMC for a </span><span><math><mi>Λ</mi></math></span><span>WDM scenario using CMB Planck and WiggleZ data, we obtained a lower bound for the WDM mass </span><span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>wdm</mi></mrow></msub><mo>&gt;</mo><mn>70</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>eV</mi></mrow></math></span> at <span><math><mrow><mn>1</mn><mi>σ</mi></mrow></math></span> confidence. Still, more data at small scales or a combination with other observations are needed to constrain the mass value of the WDM particle.</p></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"148 \",\"pages\":\"Article 102818\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092765052300004X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092765052300004X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个大质量粒子的速度的宇宙学演化,以及它的状态方程。这两个量都用anr表示,即大质量粒子变为非相对论性的时刻。背景演化的能量密度和压力表达式也用anr表示;因此,任何大质量解耦粒子的微扰方程,即热暗物质(WDM)或中微子,都可以在流体近似中计算。得到了WDM粒子的质量mwdm与非相对论跃迁矩anr的关系,以及与中微子的温度比Twdm/Tν的关系,并与用非冷遗迹WDM作为CLASS的玻尔兹曼解算结果进行了比较。我们发现,使用解析流体近似,anr的值在WDM质量的宽范围内平均相差2.1%,温度比以前的参数化低7.1%。波分频的平滑速度色散使我们能够计算由自由流(λfs)引起的结构形成的截止尺度,这是波分频粒子解释卫星问题的特征。采用解析流体近似的物质功率谱和光晕质量函数的截止点类似于具有非冷遗迹的玻尔兹曼解算和数值模拟的传递函数。这种方法通过理解WDM粒子的速度色散,对WDM宇宙演化提供了更详细的描述和更深入的理解。综合数值模拟可以结合解析流体公式,有可能提高计算性能,例如,使用CMB普朗克和WiggleZ数据对ΛWDM场景运行MCMC,我们得到了WDM质量mwdm>70.3eV在1σ置信水平下的下界。然而,需要更多的小尺度数据或与其他观测相结合来限制WDM粒子的质量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic fluid approximation for warm dark matter

We present the cosmological evolution of the velocity of a massive particle, along with its equation of state. Both quantities are expressed in terms of anr, the moment when a massive particle becomes nonrelativistic. The expressions for the energy density and pressure for the background evolution are also in terms of anr; therefore, the perturbation equations for any massively decoupled particle, i.e., warm dark matter (WDM) or neutrinos, can be computed in the fluid approximation. A relation between the mass of the WDM particle, mwdm, with the moment of the nonrelativistic transition, anr, and the temperature ratio with the neutrinos, Twdm/Tν, are obtained and compared to results from Boltzmann solvers as CLASS with a non-cold relic as WDM. We found that using the analytic fluid approximation, the value of anr is 2.1% different on average in a wide range of WDM masses, and the temperature ratio is 7.1% lower than previous parametrizations. A smooth velocity dispersion for the WDM allows us to compute the cut-off scale in structure formation due to the free-streaming (λfs), which is a feature for a WDM particle to explain the satellite problem. The cut-off in the matter power spectrum and halo mass function using the analytic fluid approximation is similar to the Boltzmann solvers with a non-cold relic and the transfer function from numerical simulations. This approach provides a more detailed description and a deeper understanding of the WDM cosmological evolution by understanding the velocity dispersion of a WDM particle. Comprehensive numerical modeling can incorporate the analytical fluid formulation, potentially improving calculation performance, for instance, running MCMC for a ΛWDM scenario using CMB Planck and WiggleZ data, we obtained a lower bound for the WDM mass mwdm>70.3eV at 1σ confidence. Still, more data at small scales or a combination with other observations are needed to constrain the mass value of the WDM particle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信