无稳态振荡的滑模极值寻优控制在无人驾驶帆船速度优化中的应用

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE
Zhipeng Shen, Xuechun Fan, Haomiao Yu, Chen Guo, Saisai Wang
{"title":"无稳态振荡的滑模极值寻优控制在无人驾驶帆船速度优化中的应用","authors":"Zhipeng Shen, Xuechun Fan, Haomiao Yu, Chen Guo, Saisai Wang","doi":"10.1017/S0373463321000667","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control without steady-state oscillation\",\"authors\":\"Zhipeng Shen, Xuechun Fan, Haomiao Yu, Chen Guo, Saisai Wang\",\"doi\":\"10.1017/S0373463321000667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463321000667\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463321000667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种无稳态振荡滑模极值寻优控制(SMESC)的无人驾驶帆船航速优化方案。在航速优化方案中,首先通过前馈块中的分段常数函数计算初始迎角,保证航速与最大航速之间的偏差较小。其次,在反馈块中采用极值搜索控制(ESC),使航速逐渐趋近于最大值;在无稳态振荡的SMESC中,设计切换律进行控制变换,使速度优化系统在第一个收敛阶段进行SMESC,在第二个稳定阶段进行无稳态振荡的ESC。该方案结合了两种控制算法的优点,既能保持较快的收敛速度,又能消除稳态振荡。进一步证明了速度优化系统的严格稳定性。最后,我们在仿真中测试了一艘无人帆船的12米数学模型,以验证该速度优化方案的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control without steady-state oscillation
Abstract This paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信