Namrata Gaikwad, Hyunho Kim, Gaurav Bhattacharjee, Jitendra S Sangwai, Rajnish Kumar* and Praveen Linga*,
{"title":"甲烷和环辛烷sH水合物的热力学、动力学、形态和拉曼光谱研究","authors":"Namrata Gaikwad, Hyunho Kim, Gaurav Bhattacharjee, Jitendra S Sangwai, Rajnish Kumar* and Praveen Linga*, ","doi":"10.1021/acsengineeringau.2c00050","DOIUrl":null,"url":null,"abstract":"<p >Natural gas is expected to be the major energy source in the near future, and storing it in the form of gas hydrate is a safe, clean, and economical approach. However, required thermodynamic conditions and slow kinetics are the key challenges that need to address for process viability. This study involves an experimental investigation of methane and cyclooctane sH hydrate formation for possible applications in gas storage using thermodynamics, kinetics, morphology, and Raman analysis. The hydrate formation is carried out at such thermodynamic conditions where only sH hydrate would form. The four-phase (L<sub>w</sub>-L<sub>HC</sub>-H-V) sH hydrate equilibrium is studied for the methane and cyclooctane system via dissociation along the phase boundary method which is a robust method as it delivers a greater number of equilibrium data points in a single experimental run compared to other available methods. The sH hydrate formation helps in lowering the equilibrium conditions compared with sI hydrate formation. The slow sH hydrate formation kinetics can be improved by using low tryptophan concentrations. In this work, 0.1 wt % is the optimum tryptophan concentration as the gas uptake, and the hydrate formation rate is found to be the highest compared to 0.01, 0.05, and 1 wt % tryptophan concentrations. Here, we also visually investigate the sH hydrate formation and observed that the hydrate formation occurs below the interface for the system with no tryptophan; however, hydrate formation occurrence above the interface increases with an increase in the tryptophan concentration. The increase in the hydrate formation could be dedicated to the increased gas uptake due to the increasingly porous nature of hydrate formation. The Raman analysis confirmed the presence of methane and cyclooctane in sH hydrate cages. The higher intensity of the peaks using tryptophan additionally confirms the higher hydrate formation compared to the system with no tryptophan.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00050","citationCount":"1","resultStr":"{\"title\":\"Thermodynamics, Kinetics, Morphology, and Raman studies for sH Hydrate of Methane and Cyclooctane\",\"authors\":\"Namrata Gaikwad, Hyunho Kim, Gaurav Bhattacharjee, Jitendra S Sangwai, Rajnish Kumar* and Praveen Linga*, \",\"doi\":\"10.1021/acsengineeringau.2c00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Natural gas is expected to be the major energy source in the near future, and storing it in the form of gas hydrate is a safe, clean, and economical approach. However, required thermodynamic conditions and slow kinetics are the key challenges that need to address for process viability. This study involves an experimental investigation of methane and cyclooctane sH hydrate formation for possible applications in gas storage using thermodynamics, kinetics, morphology, and Raman analysis. The hydrate formation is carried out at such thermodynamic conditions where only sH hydrate would form. The four-phase (L<sub>w</sub>-L<sub>HC</sub>-H-V) sH hydrate equilibrium is studied for the methane and cyclooctane system via dissociation along the phase boundary method which is a robust method as it delivers a greater number of equilibrium data points in a single experimental run compared to other available methods. The sH hydrate formation helps in lowering the equilibrium conditions compared with sI hydrate formation. The slow sH hydrate formation kinetics can be improved by using low tryptophan concentrations. In this work, 0.1 wt % is the optimum tryptophan concentration as the gas uptake, and the hydrate formation rate is found to be the highest compared to 0.01, 0.05, and 1 wt % tryptophan concentrations. Here, we also visually investigate the sH hydrate formation and observed that the hydrate formation occurs below the interface for the system with no tryptophan; however, hydrate formation occurrence above the interface increases with an increase in the tryptophan concentration. The increase in the hydrate formation could be dedicated to the increased gas uptake due to the increasingly porous nature of hydrate formation. The Raman analysis confirmed the presence of methane and cyclooctane in sH hydrate cages. The higher intensity of the peaks using tryptophan additionally confirms the higher hydrate formation compared to the system with no tryptophan.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00050\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Thermodynamics, Kinetics, Morphology, and Raman studies for sH Hydrate of Methane and Cyclooctane
Natural gas is expected to be the major energy source in the near future, and storing it in the form of gas hydrate is a safe, clean, and economical approach. However, required thermodynamic conditions and slow kinetics are the key challenges that need to address for process viability. This study involves an experimental investigation of methane and cyclooctane sH hydrate formation for possible applications in gas storage using thermodynamics, kinetics, morphology, and Raman analysis. The hydrate formation is carried out at such thermodynamic conditions where only sH hydrate would form. The four-phase (Lw-LHC-H-V) sH hydrate equilibrium is studied for the methane and cyclooctane system via dissociation along the phase boundary method which is a robust method as it delivers a greater number of equilibrium data points in a single experimental run compared to other available methods. The sH hydrate formation helps in lowering the equilibrium conditions compared with sI hydrate formation. The slow sH hydrate formation kinetics can be improved by using low tryptophan concentrations. In this work, 0.1 wt % is the optimum tryptophan concentration as the gas uptake, and the hydrate formation rate is found to be the highest compared to 0.01, 0.05, and 1 wt % tryptophan concentrations. Here, we also visually investigate the sH hydrate formation and observed that the hydrate formation occurs below the interface for the system with no tryptophan; however, hydrate formation occurrence above the interface increases with an increase in the tryptophan concentration. The increase in the hydrate formation could be dedicated to the increased gas uptake due to the increasingly porous nature of hydrate formation. The Raman analysis confirmed the presence of methane and cyclooctane in sH hydrate cages. The higher intensity of the peaks using tryptophan additionally confirms the higher hydrate formation compared to the system with no tryptophan.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)