Zhe Zhu, Akhtar A. Ali, Jing Wang, Shijin Qi, Z. Hua, Hongkun Ren, Liping Zhang, Hao Gu, A. Molenaar, M. Babar, Yanzhen Bi
{"title":"肌生长抑制素增加基质金属蛋白酶基因的表达,促进猪前体脂肪细胞分化","authors":"Zhe Zhu, Akhtar A. Ali, Jing Wang, Shijin Qi, Z. Hua, Hongkun Ren, Liping Zhang, Hao Gu, A. Molenaar, M. Babar, Yanzhen Bi","doi":"10.1080/21623945.2022.2065715","DOIUrl":null,"url":null,"abstract":"ABSTACT Myostatin (MSTN) resulted in reduced backfat thickness in MSTN-knockout (MSTN-KO) pigs, whereas the underlying mechanism remains elusive. In this study, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) in porcine fat tissues. We identified 285 DEGs, including 4 adipocyte differentiation-related genes (ADRGs). Matrix Metalloproteinase-2/7 (MMP-2/7), fibronectin (FN), and laminin (LN) were differentially expressed in MSTN-KO pigs compared with wild-type (WT) pigs. To investigate the molecular mechanism, we treated the preadipocytes with siRNA and recombinant MSTN protein. The results indicated that MSTN increased the expression of MMP-2/7/9 and promoted the preadipocyte differentiation. To further validate the effect of MSTN on MMP-2/7/9 expression, we treated MSTN-KO PK15 cells with recombinant MSTN protein and detected the expression of MMP-2/7/9. The data showed that MSTN increases the expression of MMP-2/7/9 in PK15. This study revealed that MSTN promoted preadipocyte differentiation and provided the basis for the mechanism of fatty deposition in pigs.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"266 - 275"},"PeriodicalIF":3.5000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Myostatin increases the expression of matrix metalloproteinase genes to promote preadipocytes differentiation in pigs\",\"authors\":\"Zhe Zhu, Akhtar A. Ali, Jing Wang, Shijin Qi, Z. Hua, Hongkun Ren, Liping Zhang, Hao Gu, A. Molenaar, M. Babar, Yanzhen Bi\",\"doi\":\"10.1080/21623945.2022.2065715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTACT Myostatin (MSTN) resulted in reduced backfat thickness in MSTN-knockout (MSTN-KO) pigs, whereas the underlying mechanism remains elusive. In this study, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) in porcine fat tissues. We identified 285 DEGs, including 4 adipocyte differentiation-related genes (ADRGs). Matrix Metalloproteinase-2/7 (MMP-2/7), fibronectin (FN), and laminin (LN) were differentially expressed in MSTN-KO pigs compared with wild-type (WT) pigs. To investigate the molecular mechanism, we treated the preadipocytes with siRNA and recombinant MSTN protein. The results indicated that MSTN increased the expression of MMP-2/7/9 and promoted the preadipocyte differentiation. To further validate the effect of MSTN on MMP-2/7/9 expression, we treated MSTN-KO PK15 cells with recombinant MSTN protein and detected the expression of MMP-2/7/9. The data showed that MSTN increases the expression of MMP-2/7/9 in PK15. This study revealed that MSTN promoted preadipocyte differentiation and provided the basis for the mechanism of fatty deposition in pigs.\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"11 1\",\"pages\":\"266 - 275\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2022.2065715\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2065715","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Myostatin increases the expression of matrix metalloproteinase genes to promote preadipocytes differentiation in pigs
ABSTACT Myostatin (MSTN) resulted in reduced backfat thickness in MSTN-knockout (MSTN-KO) pigs, whereas the underlying mechanism remains elusive. In this study, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) in porcine fat tissues. We identified 285 DEGs, including 4 adipocyte differentiation-related genes (ADRGs). Matrix Metalloproteinase-2/7 (MMP-2/7), fibronectin (FN), and laminin (LN) were differentially expressed in MSTN-KO pigs compared with wild-type (WT) pigs. To investigate the molecular mechanism, we treated the preadipocytes with siRNA and recombinant MSTN protein. The results indicated that MSTN increased the expression of MMP-2/7/9 and promoted the preadipocyte differentiation. To further validate the effect of MSTN on MMP-2/7/9 expression, we treated MSTN-KO PK15 cells with recombinant MSTN protein and detected the expression of MMP-2/7/9. The data showed that MSTN increases the expression of MMP-2/7/9 in PK15. This study revealed that MSTN promoted preadipocyte differentiation and provided the basis for the mechanism of fatty deposition in pigs.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.