埃及西奈半岛南部碰撞后高钾钙碱性和碱性岩浆作用的成因:地壳解剖与对流扩散相结合的作用

IF 1.5 4区 地球科学 Q2 GEOLOGY
Journal of Geology Pub Date : 2022-02-03 DOI:10.1086/718832
M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei
{"title":"埃及西奈半岛南部碰撞后高钾钙碱性和碱性岩浆作用的成因:地壳解剖与对流扩散相结合的作用","authors":"M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei","doi":"10.1086/718832","DOIUrl":null,"url":null,"abstract":"Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Petrogenesis of Postcollisional High-K Calc-Alkaline and Alkaline Magmatism in Southern Sinai, Egypt: The Role of Crustal Anatexis Combined with Convective Diffusion\",\"authors\":\"M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei\",\"doi\":\"10.1086/718832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/718832\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/718832","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

西奈半岛南部是新元古代阿拉伯-努比亚地盾的最北端,碰撞后岩浆活动广泛分布。本文研究了西奈半岛南部三个地区(Iqna Sharay’a、Rusis-Rutig和Um Shuki-Abu Khusheib)碰撞后正长花岗岩和伴生火山岩的矿物和全岩化学。研究的火山岩成分介于流纹岩和英安岩之间,少量安山岩。研究岩石类型的全岩化学组成和黑云母化学组成与高钾钙碱性和碱性/过碱性岩浆一致。所研究的正长花岗岩和大多数火山岩更接近于板块内的造山碱性环境。只有少数乌姆舒基-阿布胡什海布火山岩样品显示出造山弧型环境的一些特征。高钾钙碱性-碱性亲和和大离子亲石元素(特别是K、Rb和Ba)和轻稀土元素的相对富集以及显著的Eu负异常表明,所研究的花岗岩和火山岩是由中下地壳物质的部分熔融以及岩石圈地幔中产生的下镀基性岩浆(对流扩散)形成的。这种对流扩散描述了基性岩浆和硅质岩浆之间活跃的化学相互作用的特定场景,以解释碰撞后构造环境中大量高钾钙碱性和碱性/过碱性岩浆活动的形成。a型硅质岩浆温度超过1000℃,表明在岩石圈最上层地幔深处也可能发生岩浆生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petrogenesis of Postcollisional High-K Calc-Alkaline and Alkaline Magmatism in Southern Sinai, Egypt: The Role of Crustal Anatexis Combined with Convective Diffusion
Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geology
Journal of Geology 地学-地质学
CiteScore
3.50
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信