M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei
{"title":"埃及西奈半岛南部碰撞后高钾钙碱性和碱性岩浆作用的成因:地壳解剖与对流扩散相结合的作用","authors":"M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei","doi":"10.1086/718832","DOIUrl":null,"url":null,"abstract":"Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":"130 1","pages":"111 - 132"},"PeriodicalIF":1.5000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Petrogenesis of Postcollisional High-K Calc-Alkaline and Alkaline Magmatism in Southern Sinai, Egypt: The Role of Crustal Anatexis Combined with Convective Diffusion\",\"authors\":\"M. Ghoneim, A. Abdel-Karim, M. A. Anbar, Azza Nageib, S. El-shafei\",\"doi\":\"10.1086/718832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":\"130 1\",\"pages\":\"111 - 132\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/718832\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/718832","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Petrogenesis of Postcollisional High-K Calc-Alkaline and Alkaline Magmatism in Southern Sinai, Egypt: The Role of Crustal Anatexis Combined with Convective Diffusion
Postcollisional magmatism is widely distributed in southern Sinai, the extreme northern part of the Neoproterozoic Arabian-Nubian Shield. This article deals with mineral and whole-rock chemistry of postcollisional syenogranites and associated volcanic rocks from three localities in southern Sinai: Iqna Sharay’a, Rusis-Rutig, and Um Shuki–Abu Khusheib. The studied volcanic rocks have compositions between rhyolites and dacites with minor andesite. The whole-rock chemical compositions of the investigated rock types together with the biotite chemistry are consistent with high-K calc-alkaline and alkaline/peralkaline magma. The studied syenogranites and most volcanic rocks are more akin to anorogenic alkaline within-plate environments. Only a few samples of Um Shuki–Abu Khusheib volcanic rocks display some characteristics of orogenic arc-type environments. The high-K calc-alkaline to alkaline affinity and the relative enrichments in large ion lithophile elements (especially K, Rb, and Ba) and light rare earth elements together with a significant negative Eu anomaly imply that the studied granites and volcanic rocks were generated by partial melting of lower to middle crustal materials accompanied by the underplated mafic magma produced in the lithospheric mantle (convective diffusion). This convective diffusion describes a specific scenario of active chemical interaction between mafic and silicic magmas in order to explain formation of voluminous high-K calc-alkaline and alkaline/peralkaline magmatism in postcollisional tectonic environments. The enhanced temperatures of A-type silicic magmas of more than 1000°C suggest that magma generation could occur even at the depth of the uppermost lithospheric mantle.
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.