凸凹极大极小问题的Korpelevich和Popov超梯度算法的步长选择

IF 1.4 4区 数学 Q1 MATHEMATICS
Jiaojiao Wang, H. Xu
{"title":"凸凹极大极小问题的Korpelevich和Popov超梯度算法的步长选择","authors":"Jiaojiao Wang, H. Xu","doi":"10.37193/cjm.2023.01.22","DOIUrl":null,"url":null,"abstract":"\"We show that the choice of stepsize in Korpelevich's extragradient algorithm is sharp, while the choice of stepsize in Popov's extragradient algorithm can be relaxed. We also extend Korpelevich's extragradient algorithm and Popov's extragradient algorithm (with larger stepsize) to the infinite-dimensional Hilbert space framework, with weak convergence.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stepsize Choice for Korpelevich's and Popov's Extragradient Algorithms for Convex-Concave Minimax Problems\",\"authors\":\"Jiaojiao Wang, H. Xu\",\"doi\":\"10.37193/cjm.2023.01.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"We show that the choice of stepsize in Korpelevich's extragradient algorithm is sharp, while the choice of stepsize in Popov's extragradient algorithm can be relaxed. We also extend Korpelevich's extragradient algorithm and Popov's extragradient algorithm (with larger stepsize) to the infinite-dimensional Hilbert space framework, with weak convergence.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“我们证明了Korpelevich超梯度算法中步长的选择是尖锐的,而Popov超梯度算法的步长选择是可以放松的。我们还将Korpelewich超梯度和Popov(步长较大)超梯度算法扩展到无穷维Hilbert空间框架中,具有弱收敛性。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stepsize Choice for Korpelevich's and Popov's Extragradient Algorithms for Convex-Concave Minimax Problems
"We show that the choice of stepsize in Korpelevich's extragradient algorithm is sharp, while the choice of stepsize in Popov's extragradient algorithm can be relaxed. We also extend Korpelevich's extragradient algorithm and Popov's extragradient algorithm (with larger stepsize) to the infinite-dimensional Hilbert space framework, with weak convergence."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信