刺突蛋白电位受体研究:SARS-CoV-2 -AC2/CD147复合物的比较计算分析方法

Q3 Biochemistry, Genetics and Molecular Biology
A. Makhloufi, R. Ghemit, M. El Kolli
{"title":"刺突蛋白电位受体研究:SARS-CoV-2 -AC2/CD147复合物的比较计算分析方法","authors":"A. Makhloufi, R. Ghemit, M. El Kolli","doi":"10.33263/briac134.351","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spike Protein Potential Receptors Study: Comparative Computational Analysis Approach on SARS-CoV-2 -AC2/CD147 Complexes\",\"authors\":\"A. Makhloufi, R. Ghemit, M. El Kolli\",\"doi\":\"10.33263/briac134.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

严重急性呼吸系统综合征冠状病毒2型通过其刺突蛋白与作为受体的人类血管紧张素转化酶2的相互作用入侵宿主细胞。CD147作为高炎症的生物标志物,被发现是严重急性呼吸系统综合征冠状病毒2型的功能受体和一种额外的细胞进入途径。在本文中,我们通过比较严重急性呼吸系统综合征冠状病毒2型刺突1-AC2和严重急性呼吸系冠状病毒2型棘突1-CD147复合物的亲和力、稳定性和特异性,重点分析了病毒感染的最初步骤。蛋白质-蛋白质对接用于鉴定刺突蛋白与AC2和CD147的界面中的热点残基。结合自由能的结果显示,与SP1-CoV2/CD147(-35.75kcal/mol)相比,SP1-AC2复合物具有高亲和力(-52.97kcal/mol)。RMSF值表明,严重急性呼吸系统综合征冠状病毒2型RBD的刺突蛋白与人ACE2的结合更具兼容性,具有较高的灵活性。结合模式和蛋白质接触的计算分析表明,CD147和ACE2可能是介导病毒感染的两种互补受体,并证实了先前的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spike Protein Potential Receptors Study: Comparative Computational Analysis Approach on SARS-CoV-2 -AC2/CD147 Complexes
SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信