你口袋里的力量——揭开智能手机的面纱,用作科学和研究的尖端显微仪器

IF 2.3 Q2 OPTICS
Haoran Wang, R. Heintzmann, Benedict Diederich
{"title":"你口袋里的力量——揭开智能手机的面纱,用作科学和研究的尖端显微仪器","authors":"Haoran Wang, R. Heintzmann, Benedict Diederich","doi":"10.1515/aot-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Since the development of the first light microscope over 400 years ago, the technology has continuously evolved and established itself as a powerful tool, especially in biology, diagnostics and point-of-care (PoC) applications. The miniaturization of mass-produced actuators and sensors enables the use of technically extremely complex functions in smartphones at a very low price. They can be used to implement modern microscopy methods for use in places where access to such techniques is often very limited. In this review, we show how easy it is to integrate a smartphone into the everyday microscopy-imaging routines of biology research. Such devices have also been used to identify diseases directly at the patient. Furthermore, we demonstrate how constantly increasing computing power in combination with the steadily improving imaging quality of cameras of handheld devices enables the realization of new biomedical imaging methods, which together with commercially available and 3D-printed components make current research available to a broad mass. Examples are smartphone-based super-resolution microscopy (SRM) or task-specific single-board computer-based devices, which can analyze plankton in sea water.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"10 1","pages":"89 - 108"},"PeriodicalIF":2.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2021-0013","citationCount":"6","resultStr":"{\"title\":\"The power in your pocket – uncover smartphones for use as cutting-edge microscopic instruments in science and research\",\"authors\":\"Haoran Wang, R. Heintzmann, Benedict Diederich\",\"doi\":\"10.1515/aot-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since the development of the first light microscope over 400 years ago, the technology has continuously evolved and established itself as a powerful tool, especially in biology, diagnostics and point-of-care (PoC) applications. The miniaturization of mass-produced actuators and sensors enables the use of technically extremely complex functions in smartphones at a very low price. They can be used to implement modern microscopy methods for use in places where access to such techniques is often very limited. In this review, we show how easy it is to integrate a smartphone into the everyday microscopy-imaging routines of biology research. Such devices have also been used to identify diseases directly at the patient. Furthermore, we demonstrate how constantly increasing computing power in combination with the steadily improving imaging quality of cameras of handheld devices enables the realization of new biomedical imaging methods, which together with commercially available and 3D-printed components make current research available to a broad mass. Examples are smartphone-based super-resolution microscopy (SRM) or task-specific single-board computer-based devices, which can analyze plankton in sea water.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":\"10 1\",\"pages\":\"89 - 108\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/aot-2021-0013\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2021-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6

摘要

自400多年前第一台光学显微镜问世以来,该技术不断发展,并成为一种强大的工具,特别是在生物学、诊断和即时护理(PoC)应用领域。大规模生产的执行器和传感器的小型化使得智能手机能够以非常低的价格使用技术上极其复杂的功能。它们可用于实现现代显微镜方法,以便在获得此类技术通常非常有限的地方使用。在这篇综述中,我们展示了将智能手机集成到生物学研究的日常显微镜成像程序中是多么容易。这种装置也被用于直接在病人身上识别疾病。此外,我们展示了不断提高的计算能力与稳步提高的手持设备相机成像质量相结合,如何实现新的生物医学成像方法,这些方法与商业上可用的和3d打印的组件一起,使当前的研究可以广泛应用。例如基于智能手机的超分辨率显微镜(SRM)或基于特定任务的单板计算机设备,它们可以分析海水中的浮游生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The power in your pocket – uncover smartphones for use as cutting-edge microscopic instruments in science and research
Abstract Since the development of the first light microscope over 400 years ago, the technology has continuously evolved and established itself as a powerful tool, especially in biology, diagnostics and point-of-care (PoC) applications. The miniaturization of mass-produced actuators and sensors enables the use of technically extremely complex functions in smartphones at a very low price. They can be used to implement modern microscopy methods for use in places where access to such techniques is often very limited. In this review, we show how easy it is to integrate a smartphone into the everyday microscopy-imaging routines of biology research. Such devices have also been used to identify diseases directly at the patient. Furthermore, we demonstrate how constantly increasing computing power in combination with the steadily improving imaging quality of cameras of handheld devices enables the realization of new biomedical imaging methods, which together with commercially available and 3D-printed components make current research available to a broad mass. Examples are smartphone-based super-resolution microscopy (SRM) or task-specific single-board computer-based devices, which can analyze plankton in sea water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
23
期刊介绍: Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信