G. V. Stepanov, S. I. Kirichenko, E. E. Makhaeva, E. Yu. Kramarenko
{"title":"各向异性磁性弹性体的力学性能","authors":"G. V. Stepanov, S. I. Kirichenko, E. E. Makhaeva, E. Yu. Kramarenko","doi":"10.1134/S0965545X23700797","DOIUrl":null,"url":null,"abstract":"<p>Anisotropic magnetically active elastomers based on polydimethylsiloxane and magnetic particles of different chemical natures, shapes, and sizes have been synthesized. A comparative analysis of their mechanical properties (elastic modulus, strength, and elongation at break) has been performed depending on the mutual orientation of the internal structure, formed by magnetic filler particles during the synthesis of the composite in a magnetic field, and the direction of the external mechanical force applied to stretch the samples. The anisotropy of mechanical properties is most pronounced in composites based on anisometric particles, needle-like and plate-like. The highest values of anisotropy coefficient of elastic modulus are observed in the composite containing plate-like iron microparticles; for this composite, the ratio of the elastic moduli in the directions parallel and perpendicular to the internal structure reaches a value of five. The use of magnetic filler and its orientation by means of magnetic field is an effective method for creating polymer composites with anisotropy of mechanical properties.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"65 2","pages":"157 - 168"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Anisotropic Magnetic Elastomers\",\"authors\":\"G. V. Stepanov, S. I. Kirichenko, E. E. Makhaeva, E. Yu. Kramarenko\",\"doi\":\"10.1134/S0965545X23700797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anisotropic magnetically active elastomers based on polydimethylsiloxane and magnetic particles of different chemical natures, shapes, and sizes have been synthesized. A comparative analysis of their mechanical properties (elastic modulus, strength, and elongation at break) has been performed depending on the mutual orientation of the internal structure, formed by magnetic filler particles during the synthesis of the composite in a magnetic field, and the direction of the external mechanical force applied to stretch the samples. The anisotropy of mechanical properties is most pronounced in composites based on anisometric particles, needle-like and plate-like. The highest values of anisotropy coefficient of elastic modulus are observed in the composite containing plate-like iron microparticles; for this composite, the ratio of the elastic moduli in the directions parallel and perpendicular to the internal structure reaches a value of five. The use of magnetic filler and its orientation by means of magnetic field is an effective method for creating polymer composites with anisotropy of mechanical properties.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"65 2\",\"pages\":\"157 - 168\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X23700797\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X23700797","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanical Properties of Anisotropic Magnetic Elastomers
Anisotropic magnetically active elastomers based on polydimethylsiloxane and magnetic particles of different chemical natures, shapes, and sizes have been synthesized. A comparative analysis of their mechanical properties (elastic modulus, strength, and elongation at break) has been performed depending on the mutual orientation of the internal structure, formed by magnetic filler particles during the synthesis of the composite in a magnetic field, and the direction of the external mechanical force applied to stretch the samples. The anisotropy of mechanical properties is most pronounced in composites based on anisometric particles, needle-like and plate-like. The highest values of anisotropy coefficient of elastic modulus are observed in the composite containing plate-like iron microparticles; for this composite, the ratio of the elastic moduli in the directions parallel and perpendicular to the internal structure reaches a value of five. The use of magnetic filler and its orientation by means of magnetic field is an effective method for creating polymer composites with anisotropy of mechanical properties.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.