关于图的归一化距离拉普拉斯特征值及其在群和环上定义图中的应用

IF 1.4 4区 数学 Q1 MATHEMATICS
B. Rather, H. A. Ganie, M. Aouchiche
{"title":"关于图的归一化距离拉普拉斯特征值及其在群和环上定义图中的应用","authors":"B. Rather, H. A. Ganie, M. Aouchiche","doi":"10.37193/cjm.2023.01.14","DOIUrl":null,"url":null,"abstract":"The normalized distance Laplacian matrix of a connected graph $ G $, denoted by $ D^{\\mathcal{L}}(G) $, is defined by $ D^{\\mathcal{L}}(G)=Tr(G)^{-1/2}D^L(G)Tr(G)^{-1/2}, $ where $ D(G) $ is the distance matrix, the $D^{L}(G)$ is the distance Laplacian matrix and $ Tr(G)$ is the diagonal matrix of vertex transmissions of $ G. $ The set of all eigenvalues of $ D^{\\mathcal{L}}(G) $ including their multiplicities is the normalized distance Laplacian spectrum or $ D^{\\mathcal{L}} $-spectrum of $G$. In this paper, we find the $ D^{\\mathcal{L}} $-spectrum of the joined union of regular graphs in terms of the adjacency spectrum and the spectrum of an auxiliary matrix. As applications, we determine the $ D^{\\mathcal{L}} $-spectrum of the graphs associated with algebraic structures. In particular, we find the $ D^{\\mathcal{L}} $-spectrum of the power graphs of groups, the $ D^{\\mathcal{L}} $-spectrum of the commuting graphs of non-abelian groups and the $ D^{\\mathcal{L}} $-spectrum of the zero-divisor graphs of commutative rings. Several open problems are given for further work.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On normalized distance Laplacian eigenvalues of graphs and applications to graphs defined on groups and rings\",\"authors\":\"B. Rather, H. A. Ganie, M. Aouchiche\",\"doi\":\"10.37193/cjm.2023.01.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normalized distance Laplacian matrix of a connected graph $ G $, denoted by $ D^{\\\\mathcal{L}}(G) $, is defined by $ D^{\\\\mathcal{L}}(G)=Tr(G)^{-1/2}D^L(G)Tr(G)^{-1/2}, $ where $ D(G) $ is the distance matrix, the $D^{L}(G)$ is the distance Laplacian matrix and $ Tr(G)$ is the diagonal matrix of vertex transmissions of $ G. $ The set of all eigenvalues of $ D^{\\\\mathcal{L}}(G) $ including their multiplicities is the normalized distance Laplacian spectrum or $ D^{\\\\mathcal{L}} $-spectrum of $G$. In this paper, we find the $ D^{\\\\mathcal{L}} $-spectrum of the joined union of regular graphs in terms of the adjacency spectrum and the spectrum of an auxiliary matrix. As applications, we determine the $ D^{\\\\mathcal{L}} $-spectrum of the graphs associated with algebraic structures. In particular, we find the $ D^{\\\\mathcal{L}} $-spectrum of the power graphs of groups, the $ D^{\\\\mathcal{L}} $-spectrum of the commuting graphs of non-abelian groups and the $ D^{\\\\mathcal{L}} $-spectrum of the zero-divisor graphs of commutative rings. Several open problems are given for further work.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

连通图$G$的归一化距离拉普拉斯矩阵,表示为$D^{\mathcal{L}}(G)$,定义为$D^{\mathcal{L}}(G)=Tr(G,$D^{L}(G)$是距离拉普拉斯矩阵,$Tr(G)$$是$G的顶点传输的对角矩阵。在本文中,我们根据辅助矩阵的邻接谱和谱,找到了正则图的连接并集的$D^{\mathcal{L}}$-谱。作为应用,我们确定了与代数结构相关的图的$D^{\mathcal{L}}$谱。特别地,我们发现了群的幂图的$D^{\mathcal{L}}$谱,非阿贝尔群的交换图的$D ^{\ mathcal{L}}$光谱和交换环的零除数图的$D ^{\mathcal{L}}$频谱。提出了几个有待进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On normalized distance Laplacian eigenvalues of graphs and applications to graphs defined on groups and rings
The normalized distance Laplacian matrix of a connected graph $ G $, denoted by $ D^{\mathcal{L}}(G) $, is defined by $ D^{\mathcal{L}}(G)=Tr(G)^{-1/2}D^L(G)Tr(G)^{-1/2}, $ where $ D(G) $ is the distance matrix, the $D^{L}(G)$ is the distance Laplacian matrix and $ Tr(G)$ is the diagonal matrix of vertex transmissions of $ G. $ The set of all eigenvalues of $ D^{\mathcal{L}}(G) $ including their multiplicities is the normalized distance Laplacian spectrum or $ D^{\mathcal{L}} $-spectrum of $G$. In this paper, we find the $ D^{\mathcal{L}} $-spectrum of the joined union of regular graphs in terms of the adjacency spectrum and the spectrum of an auxiliary matrix. As applications, we determine the $ D^{\mathcal{L}} $-spectrum of the graphs associated with algebraic structures. In particular, we find the $ D^{\mathcal{L}} $-spectrum of the power graphs of groups, the $ D^{\mathcal{L}} $-spectrum of the commuting graphs of non-abelian groups and the $ D^{\mathcal{L}} $-spectrum of the zero-divisor graphs of commutative rings. Several open problems are given for further work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信